【題目】已知拋物線y=ax2+bx+c與x軸交于點A(1,0),B(3,0),且過點C(0,﹣3).
(1)求拋物線的解析式和頂點坐標(biāo);
(2)將該拋物線向左平移 個單位長度后,可使平移后的拋物線的頂點落在直線y=﹣x上,并寫出平移后拋物線的解析式: ;
(3)觀察圖象,寫出關(guān)于x的不等式ax2+bx+c+3>0的解集 .
【答案】(1)y=﹣x2+4x﹣3,頂點坐標(biāo)(2,1);(2)3, y=﹣(x+1)2+1;(3)0<x<4.
【解析】
(1)利用交點式得出y=a(x﹣1)(x﹣3),進而得出a的值,再利用配方法求出頂點坐標(biāo)即可;
(2)根據(jù)左加右減得出拋物線的解析式為y=﹣(x+1)2+1,進而得出答案;
(3)先得到C點關(guān)于對稱軸的對稱點,進一步得到關(guān)于x的不等式ax2+bx+c+3>0的解集.
(1)∵拋物線與x軸交于點A(1,0),B(3,0),
可設(shè)拋物線解析式為y=a(x﹣1)(x﹣3),
把C(0,﹣3)代入得:3a=﹣3,
解得:a=﹣1,
故拋物線解析式為y=﹣(x﹣1)(x﹣3),
即y=﹣x2+4x﹣3,
∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,
∴頂點坐標(biāo)(2,1);
(2)向左平移2﹣(﹣1)=3個單位,平移后拋物線的頂點為(﹣1,1)落在直線y=﹣x上,得到的拋物線的解析式為y=﹣(x+1)2+1;
(3)C點關(guān)于對稱軸的對稱點是(4,﹣3),關(guān)于x的不等式ax2+bx+c+3>0的解集為0<x<4.
故答案為:3, y=﹣(x+1)2+1;0<x<4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線l:y=﹣x+2與y軸交于點A,拋物線y=(x﹣1)2+m也經(jīng)過點A,其頂點為B,將該拋物線沿直線l平移使頂點B落在直線l的點D處,點D的橫坐標(biāo)n(n>1).
(1)求點B的坐標(biāo);
(2)平移后的拋物線可以表示為 (用含n的式子表示);
(3)若平移后的拋物線與原拋物線相交于點C,且點C的橫坐標(biāo)為a.
①請寫出a與n的函數(shù)關(guān)系式.
②如圖2,連接AC,CD,若∠ACD=90°,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,點M從A點開始,沿AD邊向D運動,速度為1厘米/秒,點N從點C開始沿CB邊向點B運動,速度為2厘米/秒,設(shè)四邊形MNCD的面積為S.
(1)寫出面積S與時間t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時,四邊形MNCD是平行四邊形?
(3)當(dāng)t為何值時,四邊形MNCD是等腰梯形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校九年級男生“引體向上”項目的訓(xùn)練情況,隨機抽取該年級部分男生進行了一次測試(滿分15分,成績均記為整數(shù)分),按測試成績m(單位:分)分為A、B、C、D四個組別并繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)在被調(diào)查的男生中,成績等級為D的男生有 人,成績等級為A的男生人數(shù)占被調(diào)查男生人數(shù)的百分比為 %;
(2)本次抽取樣本容量為 ,成績等級為C的男生有 人;
(3)若該校九年級男生有300名,估計成績少于9分的男生人數(shù).
分組 | 成績 | 人數(shù) |
A | 12≤m≤15 | 10 |
B | 9≤m≤11 | 22 |
C | 6≤m≤8 | |
D | m≤5 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OP1A1Q1為長為2,且∠P1=60°,將菱形OP1A1Q1繞點A1順時針旋轉(zhuǎn)1800,得到菱形A1P2A2Q2,將菱形A1P2A2Q2繞點A2順時針旋轉(zhuǎn)180°,得到菱形A2P3A3Q3……,如此進行下去,直至得到菱形A8P9A9Q9,則:
(1)P1的坐標(biāo)為_____;
(2)Q9的坐標(biāo)為_____;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上.將△ABC繞點A按順時針方向旋轉(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB′C′;
(2)計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文具店有三種品牌的6個筆記本,價格是4,5,7(單位:元)三種,從中隨機拿出一個本,已知(一次拿到7元本).
(1)求這6個本價格的眾數(shù).
(2)若琪琪已拿走一個7元本,嘉嘉準(zhǔn)備從剩余5個本中隨機拿一個本.
①所剩的5個本價格的中位數(shù)與原來6個本價格的中位數(shù)是否相同?并簡要說明理由;
②嘉嘉先隨機拿出一個本后不放回,之后又隨機從剩余的本中拿一個本,用列表法求嘉嘉兩次都拿到7元本的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)點嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | |
銷售單價m(元/件) |
(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店第幾天銷售額為792元?
(3)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中2條直線,分別為,,直線交軸于點,交軸于點,直線交軸于點,過點作軸的平行線交于點,拋物線過、、三點.
下列判斷中:
①;
②拋物線關(guān)于直線軸對稱 ;
③點在拋物線上方;
④;
⑤.其中正確的個數(shù)有( )
A.5B.4C.3D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com