【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點ABC的三個頂點A,B,C都在格點上ABC繞點A按順時針方向旋轉(zhuǎn)90°得到AB′C′

1在正方形網(wǎng)格中,畫出AB′C′;

2計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積

【答案】1作圖見解析;2

【解析

試題分析:1根據(jù)旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點旋轉(zhuǎn)后位置進而得出答案;

2利用勾股定理得出AB=5,再利用扇形面積公式求出即可

試題解析:1如圖所示

2由圖可知,線段AB在變換到AB′的過程中掃過區(qū)域的面積就是扇形B′AB的面積,其中B′AB=90°,

線段AB在變換到AB′的過程中掃過的區(qū)域的面積為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8一張長為30cm,寬20cm的矩形紙片,如圖1所示,將這張紙片的四個角各剪去一個邊長相同的正方形后,把剩余部分折成一個無蓋的長方體紙盒,如圖1所示,如果折成的長方體紙盒的底面積264cm2,求剪掉的正方形紙片的邊長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C∠DAB=∠B=30°

1)直線BD是否與⊙O相切?為什么?

2)連接CD,若CD=5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通訊公司就上寬帶網(wǎng)推出A,B,C三種月收費方式.這三種收費方式每月所需的費用y(元與上網(wǎng)時間x(h)的函數(shù)關(guān)系如圖所示,則下列判斷錯誤的是  

A. 每月上網(wǎng)時間不足25h時,選擇A方式最省錢 B. 每月上網(wǎng)費用為60元時,B方式可上網(wǎng)的時間比A方式多

C. 每月上網(wǎng)時間為35h時,選擇B方式最省錢 D. 每月上網(wǎng)時間超過70h時,選擇C方式最省錢

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點A(1,)為圓心的⊙Ay軸正半軸于B,C兩點,且OC=+1,點D⊙A上第一象限內(nèi)的一點,連接OD、CD.若OD⊙A相切,則CD的長為( 。

A. ﹣1 B. 2 C. 2 D. +1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸交于AB兩點,與y軸交于C點,拋物線的頂點為D點,點A的坐標(biāo)為(﹣1,0).

1)求D點的坐標(biāo);

2)如圖1,連接AC,BD并延長交于點E,求∠E的度數(shù);

3)如圖2,已知點P﹣4,0),點Qx軸下方的拋物線上,直線PQ交線段AC于點M,當(dāng)∠PMA=∠E時,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6m=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個根是x1=1,x2=3;

③3a+c0

當(dāng)y0時,x的取值范圍是﹣1≤x3

當(dāng)x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的角平分線.

1)尺規(guī)作圖:在圖中作出角平分線,交于點(要求保留作圖痕跡,不寫作法);

2)已知于點,若,,求的周長.

查看答案和解析>>

同步練習(xí)冊答案