【題目】圖1,圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.
(1)在圖1中畫出以AB為底邊的等腰直角三角形ABC,點C在小正方形的頂點上;
(2)在圖2中畫出以AB為腰的等腰三角形ABD,點D在小正方形的頂點上,且△ABD的面積為8.
【答案】(1)詳情見解析;(2)詳情見解析
【解析】
(1)根據(jù)題意可知點C滿足AC=BC及∠ACB=90°這兩個條件,而AC=BC說明點C在AB的垂直平分線上,∠ACB=90°則說明點C在以AB為直徑的圓上,故而可作AB的垂直平分線以及以AB為直徑的圓,它們的交點即為點C,從而得出;
(2)根據(jù)題意可知點D滿足AB=BD,故而以B點為圓心,AB長為半徑作圓,交格點于點D,經(jīng)計算,的面積為8,故即為所求.
(1)作AB的垂直平分線以及以AB為直徑的圓,它們的交點即為所求的C點,如圖,即為所求:
(2)以B點為圓心,AB長為半徑作圓,交格點于點D,即為所求:
科目:初中數(shù)學 來源: 題型:
【題目】如圖圖形都是由同樣大小的正方形“□”按照一定規(guī)律排列的,其中圖①中共有2個正方形,圖②中共有4個正方形,圖③中共有7個正方形,圖④中共有12個正方形,圖⑤中共有21個正方形,……,照此規(guī)律排列下去,則圖⑩中正方形的個數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,半徑OC⊥AB于點O,點D是的中點,連接CD、OD.下列四個結論:①ACOD;②CE=OE;③△ODE∽△ADO;④∠ADC=∠BOD.其中正確結論的序號是( )
A.①④B.①②④C.②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過點C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+8于A,B兩點,若反比例函數(shù)y=(x>0)的圖象與△ABC有公共點,則k的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,點. 沿直線折疊矩形,使點落在邊上,與點重合.分別以,所在的直線為軸,軸建立平面直角坐標系,拋物線經(jīng)過兩點.
(1)求及點的坐標;
(2)一動點從點出發(fā),沿以每秒個單位長的速度向點運動, 同時動點從點出發(fā),沿以每秒個單位長的速度向點運動, 當點運動到點時,兩點同時停止運動.設運動時間為秒,當為何值時,以,,為頂點的三角形與相似?
(3)點在拋物線對稱軸上,點在拋物線上,是否存在這樣的點與點 N,使以,,, 為頂點的四邊形是平行四邊形?若存在,請直接寫出點與點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是正方形ABCD的對角線,BC=4,邊BC在其所在的直線上平移,平移后得到的線段記為PQ,連接PA、QD,并過點Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請判斷OA、OP之間的數(shù)量關系和位置關系,并利用圖1加以證明.
(3)在平移變換過程中,設y=S△OPB,BP=x(0≤x≤4),求y與x之間的函數(shù)關系式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于,B兩點,下列說法錯誤的是( )
A.B.圖象的對稱軸為直線
C.點B的坐標為D.當時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C是半徑為2的⊙O上三個點,AB為直徑,∠BAC的平分線交圓于點D,過點D作AC的垂線交AC得延長線于點E,延長線ED交AB得延長線于點F.
(1)判斷直線EF與⊙O的位置關系,并證明.
(2)若DF=,求tan∠EAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com