【題目】如圖,已知,,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),分別平分,分別交射線于點(diǎn).

1 ; ;

2)當(dāng)點(diǎn)運(yùn)動(dòng)到某處時(shí),,求此時(shí)的度數(shù).

3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;

【答案】(1)100°,50°;(225°;(3)∠APB:∠ADB=21.

【解析】

1)由平行線的性質(zhì):兩直線平行同旁?xún)?nèi)角互補(bǔ)可得100°;再根據(jù)角平分線的定義可得2CBP+2DBP=100°,即可得50°.

2)由平行可得∠ACB=CBN,結(jié)合已知可得∠ABC=CBP=DBP=DBN即可解決問(wèn)題;即==25°.

3)可以證明∠APB=PBN,∠ADB=DBN=PBN

解:(1)∵AMBN,∠A=80°,
∴∠A+ABN=180°,
∴∠ABN=100°;
BC平分∠ABP,BD平分∠PBN
∴∠ABP=2CBP,∠PBN=2DBP
2CBP+2DBP=100°,
∴∠CBD=CBP+DBP=50°;

故答案為:100°,50°

2∵AM∥BN,
∴∠ACB=CBN,
又∵∠ACB=ABD,
∴∠CBN=ABD,
∴∠ABC=ABD-CBD=CBN-CBD=DBN,
∴∠ABC=CBP=DBP=DBN,
∴∠ABC=ABN==25°

3)不變.理由如下:
AMBN,
∴∠APB=PBN,∠ADB=DBN
又∵BD平分∠PBN,
∴∠ADB=DBN=PBN=APB,

即∠APB:∠ADB=21

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB=8cm,BC=12cm,點(diǎn)E為AB中點(diǎn),如果點(diǎn)P在線段BC上以每秒4cm的速度,由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上以v厘米/秒的速度,由點(diǎn)C向點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)直接寫(xiě)出:PC= 厘米,CQ= 厘米;(用含t、v的代數(shù)式表示)

(2)若以E、B、P為頂點(diǎn)的三角形和以P、C、Q為頂點(diǎn)的三角形全等,試求v、t的值;

(3)若點(diǎn)Q以(2)中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針?lè)较蜓亻L(zhǎng)方形ABCD的四邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在長(zhǎng)方形ABCD的哪條邊上相遇?

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】供電局的電力維修工甲、乙兩人要到30千米遠(yuǎn)的A地進(jìn)行電力搶修.甲騎摩托車(chē)先行,小時(shí)后乙開(kāi)搶修車(chē)載著所需材料出發(fā),結(jié)果甲、乙兩人同時(shí)到達(dá).已知搶修車(chē)的速度是摩托車(chē)的1.5倍,求摩托車(chē)的速度.

1)設(shè)摩托車(chē)的速度為x千米/時(shí),利用速度、時(shí)間、路程之間的關(guān)系填寫(xiě)下表.

(要求:填上適當(dāng)?shù)拇鷶?shù)式,完成表格)

速度(千米/時(shí))

所走的路程(千米)

所用時(shí)間(時(shí))

摩托車(chē)

x

30

搶修車(chē)

30

2)列出方程,并求摩托車(chē)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A1,A2,…,An均在直線y=x﹣2上,點(diǎn)B1,B2,…,Bn均在雙曲線y=﹣上,并且滿足:A1B1x軸,B1A2y軸,A2B2x軸,B2A3y軸,…,AnBnx軸,BnAn+1y軸,,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若a1=﹣2,則a2016=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從﹣3、﹣2、﹣1、1、2、3六個(gè)數(shù)中任選一個(gè)數(shù)記為k,若數(shù)k使得關(guān)于x的分式方程k2有解,且使關(guān)于x的一次函數(shù)y=(k+x+2不經(jīng)過(guò)第四象限,那么這6個(gè)數(shù)中,所有滿足條件的k的值之和是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ab、c為△ABC的三邊。

(1)判斷代數(shù)式a2abc+b的值與0的大小關(guān)系,并說(shuō)明理由;

(2)滿足a+b+c=ab+ac+bc,試判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC60°,過(guò)點(diǎn)AAECD于點(diǎn)E,交對(duì)角線BD于點(diǎn)F,過(guò)點(diǎn)FFGAD于點(diǎn)G

1)若AB2,求四邊形ABFG的面積;

2)求證:BFAE+FG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1所示的三棱柱,高為,底面是一個(gè)邊長(zhǎng)為的等邊三角形.

(1)這個(gè)三棱柱有 條棱, 個(gè)面;

(2)2方框中的圖形是該三棱柱的表面展開(kāi)圖的一部分,請(qǐng)將它補(bǔ)全;

(3)要將該三棱柱的表面沿某些棱剪開(kāi),展開(kāi)成一個(gè)平面圖形,需剪開(kāi) 條棱,需剪開(kāi)棱的棱長(zhǎng)的和的最大值為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案