【題目】如圖,過正方形ABCD頂點B,C的⊙O與AD相切于點E,與CD相交于點F,連接EF.
(1)求證:EF平分∠BFD.
(2)若tan∠FBC=,DF=,求EF的長.
【答案】(1)見解析;(2)5
【解析】
(1)根據切線的性質得到OE⊥AD,由四邊形ABCD的正方形,得到CD⊥AD,推出OE∥CD,根據平行線的性質得到∠EFD=∠OEF,由等腰三角形的性質得到∠OEF=∠OFE,根據角平分線的定義即可得到結論;
(2)連接PF,由BF是⊙O的直徑,得到∠BPF=90°,推出四邊形BCFP是矩形,根據tan∠FBC=,設CF=3x,BC=4x,于是得到3x+=4x,x=,求得AD=BC=4,推出DF∥OE∥AB于是得到DE:AE=OF:OB=1:1即可得到結論.
解:(1)連接OE,
∵∠C=90°,
∴BF是⊙O的直徑,
∵⊙O與AD相切于點E,
∴OE⊥AD,
∵四邊形ABCD的正方形,
∴CD⊥AD,
∴OE∥CD,
∴∠EFD=∠OEF,
∵OE=OF,
∴∠OEF=∠OFE,
∴∠OFE=∠EFD,
∴EF平分∠BFD;
(2)連接PF,
∵BF是⊙O的直徑,
∴∠BPF=90°,
∴四邊形BCFP是矩形,
∴PF=BC,
∵tan∠FBC=,
設CF=3x,BC=4x,
∴3x+=4x,x=,
∴AD=BC=4,
∵點E是切點,
∴OE⊥AD
∴DF∥OE∥AB
∴DE:AE=OF:OB=1:1
∴DE=AD=2,
∴EF= =5
科目:初中數(shù)學 來源: 題型:
【題目】在一空曠場地上設計一落地為矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內的條件下活動,其可以活動的區(qū)域面積為S(m2).
(1)如圖1,若BC=4m,則S=_____m2.
(2)如圖2,現(xiàn)考慮在(1)中矩形ABCD小屋的右側以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其他條件不變,則在BC的變化過程中,當S取得最小值時,邊BC的長為____m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x﹣2與x軸交于點A,與y軸交于點C,拋物線y=x2+bx+c經過A、C兩點,與x軸的另一交點為點B.
(1)求拋物線的函數(shù)表達式;
(2)點D為直線AC下方拋物線上一點,且∠ACD=2∠BAC,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角三角形ABC中,∠ACB=900,AB=10, BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應點記為A1;AD的中點E的對應點記為E1.若△E1FA1∽△E1BF,則AD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4cm,點E、F同時從C點出發(fā),以1cm/s的速度分別沿CB﹣BA、CD﹣DA運動,到點A時停止運動.設運動時間為t(s),△AEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關系可用圖象表示為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2 ,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,4),請解答下列問題:
(1)畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標.
(2)畫出△A1B1C1繞原點O旋轉180°后得到的△A2B2C2,并寫出點A2的坐標.
【答案】(1)作圖見解析;點A1的坐標(2,﹣4);(2)作圖見解析;點A2的坐標(﹣2,4).
【解析】
試題分析:(1)分別找出A、B、C三點關于x軸的對稱點,再順次連接,然后根據圖形寫出A點坐標;
(2)將△A1B1C1中的各點A1、B1、C1繞原點O旋轉180°后,得到相應的對應點A2、B2、C2,連接各對應點即得△A2B2C2.
試題解析:(1)如圖所示:點A1的坐標(2,﹣4);
(2)如圖所示,點A2的坐標(﹣2,4).
考點:1.作圖-旋轉變換;2.作圖-軸對稱變換.
【題型】解答題
【結束】
18
【題目】觀察下面的點陣圖和相應的等式,探究其中的規(guī)律:
(1)認真觀察,并在④后面的橫線上寫出相應的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)結合(1)觀察下列點陣圖,并在⑤后面的橫線上寫出相應的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通過猜想,寫出(2)中與第n個點陣相對應的等式 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸負半軸于點E,反比例函數(shù)y=﹣(x<0)的圖象過點A,則△BEC的面積是_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com