【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,4),請解答下列問題:
(1)畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標.
(2)畫出△A1B1C1繞原點O旋轉180°后得到的△A2B2C2,并寫出點A2的坐標.
【答案】(1)作圖見解析;點A1的坐標(2,﹣4);(2)作圖見解析;點A2的坐標(﹣2,4).
【解析】
試題分析:(1)分別找出A、B、C三點關于x軸的對稱點,再順次連接,然后根據(jù)圖形寫出A點坐標;
(2)將△A1B1C1中的各點A1、B1、C1繞原點O旋轉180°后,得到相應的對應點A2、B2、C2,連接各對應點即得△A2B2C2.
試題解析:(1)如圖所示:點A1的坐標(2,﹣4);
(2)如圖所示,點A2的坐標(﹣2,4).
考點:1.作圖-旋轉變換;2.作圖-軸對稱變換.
【題型】解答題
【結束】
18
【題目】觀察下面的點陣圖和相應的等式,探究其中的規(guī)律:
(1)認真觀察,并在④后面的橫線上寫出相應的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)結合(1)觀察下列點陣圖,并在⑤后面的橫線上寫出相應的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通過猜想,寫出(2)中與第n個點陣相對應的等式 .
科目:初中數(shù)學 來源: 題型:
【題目】為了了解同學們每月零花錢的數(shù)額,校園小記者隨機調(diào)查了本校部分同學,根據(jù)調(diào)查結果,繪制出了如下尚不完整的統(tǒng)計圖表。
請根據(jù)以上圖表,解答下列問題:
(1)這次被調(diào)查的同學共有_____________人,a+b=______________,m=________;
(2)求扇形統(tǒng)計圖中扇形C的圓心角度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李和小陸從A地出發(fā),騎自行車沿同一條路行駛到B地,他們離出發(fā)地的距離S(單位:km)和行駛時間t(單位:h)之間的函數(shù)關系的圖象如圖所示,根據(jù)圖中的信息,有下列說法:
(1)他們都行駛了20 km;
(2)小陸全程共用了1.5h;
(3)小李和小陸相遇后,小李的速度小于小陸的速度
(4)小李在途中停留了0.5h。
其中正確的有
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象與x軸交于點A(-2,0),與y軸交于點B.若△AOB的面積為8,求一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設備共8臺,用于同時治理不同成分的污水,若購買A型2臺、B型3臺需54萬,購買A型4臺、B型2臺需68萬元.
(1)求出A型、B型污水處理設備的單價;
(2)經(jīng)核實,一臺A型設備一個月可處理污水220噸,一臺B型設備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形 ABCD中, AB16 , BC18 ,點 E在邊 AB 上,點 F 是邊 BC 上不與點 B、C 重合的一個動點,把△EBF沿 EF 折疊,點B落在點 B' 處.
(I)若 AE0 時,且點 B' 恰好落在 AD 邊上,請直接寫出 DB' 的長;
(II)若 AE3 時, 且△CDB' 是以 DB' 為腰的等腰三角形,試求 DB' 的長;
(III)若AE8時,且點 B' 落在矩形內(nèi)部(不含邊長),試直接寫出 DB' 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點A順時針旋轉到Rt△ADE的位置,點E在斜邊AB上,連結BD,過點D作DF⊥AC于點F.
(1)如圖1,若點F與點A重合,求證:AC=BC;
(2)若∠DAF=∠DBA,
①如圖2,當點F在線段CA的延長線上時,判斷線段AF與線段BE的數(shù)量關系,并說明理由;
②當點F在線段CA上時,設BE=x,請用含x的代數(shù)式表示線段AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:AD平分∠CAE,AD∥BC.
(1)求證:△ABC是等腰三角形.
(2)當∠CAE等于多少度時△ABC是等邊三角形?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1;
(2)分別連結AB1、BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com