【題目】填空,完成下列說(shuō)理過(guò)程

如圖,∠AOB90°,∠COD90°,OA平分∠DOE,若∠BOC20°,求∠COE的度數(shù)

解:因?yàn)椤?/span>AOB90°

所以∠BOC+AOC90°

因?yàn)椤?/span>COD90°

所以∠AOD+AOC90°

所以∠BOC=∠AOD    

因?yàn)椤?/span>BOC20°

所以∠AOD20°

因?yàn)?/span>OA平分∠DOE

所以∠   2AOD   °    

所以∠COE=∠COD﹣∠DOE   °

【答案】同角的余角相等,DOE,40°,角平分線(xiàn)的定義,50°

【解析】

根據(jù)余角的性質(zhì)先求出∠AOD=BOC,再根據(jù)角平分線(xiàn)的定義求出∠DOE的度數(shù),再根據(jù)COECODDOE即可求得答案.

因?yàn)?/span>AOB90°,

所以BOC+∠AOC90°

因?yàn)?/span>COD90°,

所以AOD+∠AOC90°,

所以BOCAOD(同角的余角相等),

因?yàn)?/span>BOC20°,

所以AOD20°

因?yàn)?/span>OA平分DOE,

所以DOE2∠AOD40°(角平分線(xiàn)的定義)

所以COECODDOE50°,

故答案為:同角的余角相等,DOE,40°,角平分線(xiàn)的定義,50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,C是劣弧 的中點(diǎn),連BO并延長(zhǎng)交⊙O于點(diǎn)D,連接CA,CB,AB與CD交于點(diǎn)F,已知CF=1,F(xiàn)D=2.
(1)求CB的長(zhǎng);
(2)延長(zhǎng)DB到E,使BE=OB,連接CE,求證:CE是⊙O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AC與BD是圓的直徑,BE⊥AC,CF⊥BD,垂足分別為E、F
(1)四邊形ABCD是什么特殊的四邊形?請(qǐng)判斷并說(shuō)明理由;
(2)求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一個(gè)長(zhǎng)為4a、寬為b的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀平均分成四塊小長(zhǎng)方形,然后用四塊小長(zhǎng)方形拼成的一個(gè)“回形”正方形(如圖2).

(1)圖2中陰影部分的面積為   

(2)觀察圖2,請(qǐng)你寫(xiě)出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 

(3)根據(jù)(2)中的結(jié)論,若x+y=5,xy=4,求x﹣y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)枇杷20噸,桃子12噸.現(xiàn)計(jì)劃租用甲、乙兩種貨車(chē)共8輛將這批水果運(yùn)回,已知一輛甲種貨車(chē)可裝枇杷4噸和桃子1噸,一輛乙種貨車(chē)可裝枇杷和桃子各2噸.

1)如何安排甲、乙兩種貨車(chē)可一次性地運(yùn)到?有幾種方案?

2)若甲種貨車(chē)每輛要付運(yùn)輸費(fèi)300元,乙種貨車(chē)每輛要付運(yùn)輸費(fèi)240元,則果商場(chǎng)應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)最少?最少運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)EABC外部,點(diǎn)DBC邊上,DEAC于點(diǎn)F,若∠C=E,∠BAD=CAE,AC=AE

(1)求證:ABC≌△ADE;

(2)若∠B=60°,求證:ABD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC的外側(cè)作直線(xiàn)AP,點(diǎn)C關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線(xiàn)AP于點(diǎn)E.

(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);

(3)連結(jié)CE,寫(xiě)出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:6sin60°﹣( 2 +|2﹣ |.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題。
(1)計(jì)算: .
(2)解不等式:4x+5≤2(x+1).

查看答案和解析>>

同步練習(xí)冊(cè)答案