【題目】如圖,兩個半徑相等的直角扇形的圓心分別在對方的圓弧上,半徑AE、CF交于點(diǎn)G,半徑BE、CD交于點(diǎn)H,且點(diǎn)C是弧AB的中點(diǎn),若扇形的半徑為,則圖中陰影部分的面積等于_____.
【答案】π﹣2
【解析】
根據(jù)扇形的面積公式求出面積,再過點(diǎn)C作CM⊥AE,作CN⊥BE,垂足分別為M、N,然后證明△CMG與△CNH全等,從而得到中間空白區(qū)域的面積等于以2為對角線的正方形的面積,從而得出陰影部分的面積.
兩扇形的面積和為:,
過點(diǎn)C作CM⊥AE,作CN⊥BE,垂足分別為M、N,如圖,
則四邊形EMCN是矩形,
∵點(diǎn)C是的中點(diǎn),
∴EC平分∠AEB,
∴CM=CN,
∴矩形EMCN是正方形,
∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,
∴∠MCG=∠NCH,
在△CMG與△CNH中,,
∴△CMG≌△CNH(ASA),
∴中間空白區(qū)域面積相當(dāng)于對角線是的正方形面積,
∴空白區(qū)域的面積為:,
∴圖中陰影部分的面積=兩個扇形面積和﹣2個空白區(qū)域面積的和.
故答案為:π﹣2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(是常數(shù))經(jīng)過點(diǎn).
(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo).
(2)若點(diǎn)在拋物線上,且點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為.
①當(dāng)點(diǎn)落在該拋物線上時,求的值;
②當(dāng)點(diǎn)落在第二象限內(nèi),取得最小值時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,點(diǎn)E為邊CD的中點(diǎn),若菱形ABCD的周長為16,∠BAD=60°,則△OCE的面積是( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校創(chuàng)建“環(huán)保示范學(xué)校”,為了解全校學(xué)生參加環(huán)保類杜團(tuán)的意愿,在全校隨機(jī)抽取了50名學(xué)生進(jìn)行問卷調(diào)查,問卷給出了五個社團(tuán)供學(xué)生選擇(學(xué)生可根據(jù)自己的愛好選擇一個社團(tuán),也可以不選),對選擇了社團(tuán)的學(xué)生的問卷情況進(jìn)行了統(tǒng)計,如表:
社團(tuán)名稱 | A.酵素制作社團(tuán) | B.回收材料小制作社團(tuán) | C.垃圾分類社團(tuán) | D.環(huán)保義工社團(tuán) | E.綠植養(yǎng)護(hù)社團(tuán) |
人數(shù) | 10 | 15 | 5 | 10 | 5 |
(1)填空:在統(tǒng)計表中,這5個數(shù)的中位數(shù)是 ;
(2)根據(jù)以上信息,補(bǔ)全扇形圖(圖1)和條形圖(圖2);
(3)該校有1400名學(xué)生,根據(jù)調(diào)查統(tǒng)計情況,請估計全校有多少學(xué)生愿意參加環(huán)保義工社團(tuán);
(4)若小詩和小雨兩名同學(xué)在酵素制作社團(tuán)或綠植養(yǎng)護(hù)社團(tuán)中任意選擇一個參加,請用樹狀圖或列表法求出這兩名同學(xué)同時選擇綠植養(yǎng)護(hù)社團(tuán)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】B,C是⊙O上的兩個定點(diǎn),A是圓上的動點(diǎn),0°<∠BAC<90°,BD∥AC,CD∥AB.
(1)如圖1,如果△ABC是等邊三角形,求證BD是⊙O的切線:
(2)如圖2,如果60°<∠BAC<90°,BD,CD分別交⊙O于E,F,研究五邊形ABEFC的性質(zhì);
①探索AE、AF和BC的數(shù)量關(guān)系,并證明你的結(jié)論:
②如圖3,若⊙O的半徑為4,∠BAC=75°,求邊EF的長;
③若AB=c,AC=b,直接寫出BE,CF的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)E為AB上的一點(diǎn),EF⊥AB,交BD于點(diǎn)F.
(1)如圖1,直按寫出的值 ;
(2)將△EBF繞點(diǎn)B順時針旋轉(zhuǎn)到如圖2所示的位置,連接AE、DF,猜想DF與AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,當(dāng)BE=BA時,其他條件不變,△EBF繞點(diǎn)B順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<360°),當(dāng)α為何值時,EA=ED?在圖3或備用圖中畫出圖形,并直接寫出此時α= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A(3,0),頂點(diǎn)B在y軸正半軸上,頂點(diǎn)D在x軸負(fù)半軸上,若拋物線y=-x2-5x+c經(jīng)過點(diǎn)B、C,則菱形ABCD的面積為( )
A.15B.20C.25D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且關(guān)于直線x=1對稱,點(diǎn)A的坐標(biāo)為(﹣1,0).
(1)求二次函數(shù)的表達(dá)式;
(2)連接BC,若點(diǎn)P在y軸上時,BP和BC的夾角為15°,求線段CP的長度;
(3)當(dāng)a≤x≤a+1時,二次函數(shù)y=x2+bx+c的最小值為2a,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛一起做游戲,游戲規(guī)則如下:將分別標(biāo)有數(shù)字 1, 2, 3, 4 的 4 個小球放入一個不透明的袋子中,這些球除數(shù)字外都相同.從中隨機(jī)摸出一個球記下數(shù)字后放回,再從中隨機(jī)摸出一個球記下數(shù)字.若兩次數(shù)字差的絕對值小于 2,則小明獲勝,否則小剛獲勝.這個游戲?qū)扇斯絾?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com