【題目】如圖,已知拋物線L:y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(-3,0)、B(0,4)和F(4,0).
(1)求拋物線L的解析式;
(2)在圖①拋物線L上,求作點(diǎn)C(保留作圖痕跡,不寫作法),使∠BAC=∠FAC,并求出點(diǎn)C的坐標(biāo);
(3)在圖①中,若點(diǎn)D為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,交直線AC于點(diǎn)G,過(guò)點(diǎn)C作CK⊥x軸于點(diǎn)K,連接DC,當(dāng)以點(diǎn)G,C,D為頂點(diǎn)的三角形與△ACK相似時(shí),求點(diǎn)D的坐標(biāo).
【答案】(1);(2)點(diǎn)C的坐標(biāo)(,);(3)點(diǎn)D的坐標(biāo)(,)或(,).
【解析】
(1)將點(diǎn)A(-3,0)、B(0,4)和F(4,0)的坐標(biāo)代入解析式中即可求出結(jié)論;
(2)根據(jù)題意,作出∠BAF的角平分線AC即可,然后過(guò)點(diǎn)B作BP∥AC交x軸于點(diǎn)P,過(guò)點(diǎn)C作CQ⊥x軸于點(diǎn)Q,設(shè)點(diǎn)C的坐標(biāo)為(t,),證出,列出比例式即可求出t,從而求出點(diǎn)C的坐標(biāo);
(3)根據(jù)相似三角形的對(duì)應(yīng)情況分類討論,分別畫出對(duì)應(yīng)的圖形,然后根據(jù)拋物線的對(duì)稱性、相似三角形的判定及性質(zhì)和聯(lián)立方程求交點(diǎn)坐標(biāo),即可分別求出結(jié)論.
解:(1)將點(diǎn)A(-3,0)、B(0,4)和F(4,0)的坐標(biāo)代入拋物線L的解析式中,得
解得:
∴拋物線L的解析式為;
(2)以A為圓心,任意長(zhǎng)度為半徑作弧,分別交AB、AF于M、N;然后分別以M、N為圓心,大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,作射線AE,交y軸于點(diǎn)P,交拋物線于點(diǎn)C,易知此時(shí)AC平分∠BAF,即∠BAC=∠FAC,如下圖所示,點(diǎn)C即為所求.
過(guò)點(diǎn)B作BP∥AC交x軸于點(diǎn)P,過(guò)點(diǎn)C作CQ⊥x軸于點(diǎn)Q
∵點(diǎn)A(-3,0)、B(0,4),∠BOA=90°
∴AO=3,BO=4,
根據(jù)勾股定理可得AB=
∵BP∥AC,AC平分∠BAF
∴∠BPO=∠CAQ,∠BAO=2∠CAQ
∴∠BAO=2∠BPO
∵∠BAO=∠BPO+∠ABP
∴∠BPO=∠ABP
∴AP=AB=5
∴PO=AP+AO=8
設(shè)點(diǎn)C的坐標(biāo)為(t,),由圖可知:t>0
∴OQ=t,CQ=
∴AQ=t+3
∵∠CQA=∠BOP=90°,∠CAQ =∠BPO
∴
∴
即
解得:(不符合t的取值范圍,舍去)
∴點(diǎn)C的縱坐標(biāo)為=
∴點(diǎn)C的坐標(biāo)為(,);
(3)①當(dāng)時(shí),如下圖所示
∴∠DCG=∠KAC,∠CDG=∠AKC=90°
∴CD∥x軸
此時(shí)點(diǎn)C、D關(guān)于拋物線L的對(duì)稱軸對(duì)稱,對(duì)稱軸為直線x==
∵點(diǎn)C的坐標(biāo)為(,)
∴此時(shí)點(diǎn)D的坐標(biāo)為(,);
②當(dāng)時(shí),如下圖所示
∴∠DCG=∠AKC=90°
∴DC⊥AC
設(shè)CD與x軸交于點(diǎn)M
由(2)知:點(diǎn)C的坐標(biāo)為(,),AK=,CK=
∵∠AKC=∠CKM=∠ACM=90°
∴∠CAK+∠ACK=90°,∠MCK+∠ACK=90°
∴∠CAK=∠MCK
∴
∴
∴
解得:MK=
∴OM=
∴點(diǎn)M的坐標(biāo)為(,0)
設(shè)直線CD的解析式為y=kx+d
將點(diǎn)C和點(diǎn)M的坐標(biāo)代入,得
解得:
∴直線CD的解析式為
聯(lián)立
解得:或
其中點(diǎn)C的坐標(biāo)為(,)
∴點(diǎn)D的坐標(biāo)為(,);
③∵∠DGC一定不等于90°
∴不存在點(diǎn)D,使或;
當(dāng)以點(diǎn)G,C,D為頂點(diǎn)的三角形與相似時(shí),點(diǎn)D的坐標(biāo)為(,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+6x﹣5的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為P,連接PA、AC、CP,過(guò)點(diǎn)C作y軸的垂線l.
(1)P的坐標(biāo) ,C的坐標(biāo) ;
(2)直線1上是否存在點(diǎn)Q,使△PBQ的面積等于△PAC面積的2倍?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點(diǎn)D,DE⊥AB,垂足為E。若DE=1,則BC的長(zhǎng)為( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)的圖象與二次函數(shù)的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)C,設(shè)二次函數(shù)圖象的頂點(diǎn)為D.
(1)求點(diǎn)C的坐標(biāo);
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,且△ACD的面積等于3,求此二次函數(shù)的解析式;
(3)若,且△ACD的面積等于10,請(qǐng)直接寫出滿足條件的點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)某班準(zhǔn)備選拔四名男生參加學(xué)校運(yùn)動(dòng)會(huì)接力比賽,進(jìn)行了一次50米短跑測(cè)驗(yàn),成績(jī)?nèi)缦拢?/span>(單位:秒)6.9 7.0 7.1 7.2 7.0 7.4 7.3 7.5 7.0 7.4 7.3 6.8 7.0 7.1 7.3 6.9 7.1 7.2 7.4 6.9 7.0 7.2 7.0 7.2 7.6
班主任老師按0.2秒的組距分段,統(tǒng)計(jì)每個(gè)成績(jī)段出現(xiàn)的頻數(shù),填入頻數(shù)分布表,并繪制了頻數(shù)分布直方圖.
成績(jī)段(秒) | |||||
頻數(shù) | 4 | 9 | 7 | 1 | |
頻率 | 0.36 | 0.28 | 0.16 | 0.04 |
(1)求a、b值,并將頻數(shù)分布直方圖補(bǔ)充完整;
(2)請(qǐng)計(jì)算這次短跑測(cè)驗(yàn)的優(yōu)秀率(7.0秒及7.0秒以下);
(3)成績(jī)前四名的A、B、C、D同學(xué)組成九年級(jí)某班4×100米接力隊(duì),其中成績(jī)最好的A同學(xué)安排在最后一棒(第4棒),另外三位同學(xué)隨機(jī)編排在其余三個(gè)棒次,畫樹(shù)狀圖或列表說(shuō)明B、C兩位同學(xué)為相鄰棒次的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時(shí),求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)PBQ存在時(shí),求運(yùn)動(dòng)多少秒時(shí),PBQ的面積最大?最大面積是多少?
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使以P,B,Q為頂點(diǎn)的三角形為直角三角形?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀理解)
用的矩形瓷磚,可拼得一些長(zhǎng)度不同但寬度均為的矩形圖案.
已知長(zhǎng)度為的所有圖案如下:
(嘗試操作)
在所給方格中(假設(shè)圖中最小方格的邊長(zhǎng)為),嘗試畫出所有用的“矩形瓷磚”拼得的“長(zhǎng)度是,但寬度均為”的矩形圖案示意圖.
(歸納發(fā)現(xiàn))
觀察以上結(jié)果,探究圖案?jìng)(gè)數(shù)與圖案長(zhǎng)度之間的關(guān)系,將下表補(bǔ)充完整.
(規(guī)律概括)
描述一下你發(fā)現(xiàn)的規(guī)律: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,,對(duì)稱軸為直線,則下列結(jié)論:①;②;③;④是關(guān)于x的一元二次方程的一個(gè)根,其中正確的有_________個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com