【題目】如圖,在△ABC中,∠B=30°∠C=45°,AD平分∠BACBC于點(diǎn)D,DE⊥AB,垂足為E。若DE=1,則BC的長為(

A.2+B.C.D.3

【答案】A

【解析】

如圖,過點(diǎn)DDF⊥ACF,由角平分線的性質(zhì)可得DF=DE=1,在Rt△BED中,根據(jù)30度角所對直角邊等于斜邊一半可得BD長,在Rt△CDF中,由∠C=45°,可知△CDF為等腰直角三角形,利用勾股定理可求得CD的長,繼而由BC=BD+CD即可求得答案.

如圖,過點(diǎn)DDF⊥ACF

∵AD∠BAC的平分線,且DE⊥ABE,DF⊥ACF,

∴DF=DE=1,

Rt△BED中,∠B=30°

∴BD=2DE=2,

Rt△CDF中,∠C=45°

∴△CDF為等腰直角三角形,

CF=DF=1

∴CD==,

∴BC=BD+CD=

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?

(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在四邊形ABCD中,ABCD,E,F(xiàn)為對角線AC上兩點(diǎn),且AE=CF,DFBE,AC平分BAD.求證:四邊形ABCD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次課題學(xué)習(xí)活動中,老師提出了如下問題:如圖,四邊形是正方形,點(diǎn)是邊的中點(diǎn),,且交正方形外角平分線于點(diǎn).請你探究存在怎樣的數(shù)量關(guān)系,并證明你的結(jié)論正確.經(jīng)過探究,小明得出的結(jié)論是,而要證明結(jié)論,就需要證明所在的兩個三角形全等,但顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點(diǎn)是邊的中點(diǎn),小明想到的方法是如圖2,取的中點(diǎn),連接,證明.從而得到.請你參考小明的方法解決下列問題.

1)如圖3,若把條件“點(diǎn)是邊的中點(diǎn)”改為“點(diǎn)是邊上的任意一點(diǎn)”,其余條件不變,證明結(jié)論仍然成立;

2)如圖4,若把條件“點(diǎn)是邊的中點(diǎn)”改為:“點(diǎn)是邊延長線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論是否還成立?若成立,請完成證明過程,若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點(diǎn)運(yùn)動到點(diǎn)(1,1),第2次接著運(yùn)動到點(diǎn)(2,0),第3次接著運(yùn)動到點(diǎn)(3,2),,按這樣的運(yùn)動規(guī)律,經(jīng)過第2019次運(yùn)動后,動點(diǎn)P的坐標(biāo)是(

A. 2018,0B. 20182C. 2019,2D. 2019,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】標(biāo)有-3,-2,4的三張不透明的卡片,除正面寫有不同的數(shù)字外,其余的值都相同,將這三張卡片背面朝上洗勻后,第一次從中隨機(jī)抽取一張,并把這張卡片標(biāo)有的數(shù)字記為一次函數(shù)解析式y(tǒng)=kx+b的k值,第二次從余下的兩張卡片中再抽取一張,上面標(biāo)有的數(shù)字記為一次函數(shù)解析式的b值.

(1)寫出k為負(fù)數(shù)的概率;

(2)求一次函數(shù)y=kx+b的圖象不經(jīng)過第一象限的概率.(用樹狀圖或列舉法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D0,4),B6,0).若反比例函數(shù)y=x0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b

1)求反比例函數(shù)和直線EF的解析式;

2)求OEF的面積;

3)請結(jié)合圖象直接寫出不等式k2x+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在愛滿揚(yáng)州慈善一日捐活動中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計,并繪制成統(tǒng)計圖.

1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;

2)求這50名同學(xué)捐款的平均數(shù);

3)該校共有600名學(xué)生參與捐款,請估計該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,邊上的一點(diǎn),連接,把繞著點(diǎn)逆時針旋轉(zhuǎn),得到,連接,若,,則的周長是( )

A.16B.15C.13D.12

查看答案和解析>>

同步練習(xí)冊答案