【題目】裝廠批發(fā)某種服裝,每件成本為65元,規(guī)定不低于10件可以批發(fā),其批發(fā)價y(元/件)與批發(fā)數(shù)量x(件)(x為正整數(shù))之間所滿足的函數(shù)關(guān)系如圖所示.
(1)求y與x之間所滿足的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)若10≤x≤50(x為正整數(shù)),求批發(fā)該種服裝多少件時,服裝廠獲得利潤600元?
【答案】(1) ;
(2)60件.
【解析】
(1)根據(jù)題意和函數(shù)圖象可以寫出y與x之間所滿足的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)根據(jù)題意可以得到利潤600與x的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì),即可解答本題.
解:(1)當(dāng)10≤x≤50時,設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,
,解之得,
∴當(dāng)10≤x≤50時,y與x的函數(shù)關(guān)系式為y=-0.5x+105,
當(dāng)x>50時,y=80,
即y與x的函數(shù)關(guān)系式為: ;
(2)設(shè)批發(fā)該種服裝件,
由題意可得: ,
解之得:,或(不合題意,舍去),
∴當(dāng)批發(fā)該種服裝60件時,服裝廠獲得利潤600元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一、閱讀材料:
已知實數(shù)m,n滿足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值.
解:設(shè)2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t-1)=80,整理得t2-1=80,t2=81,所以t=土9,因為2m2+n2>0,所以2m2+n2=9.
二、方法歸納:
上面這種方法稱為“ 法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
三、探索實踐:
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
(1)已知實數(shù)x、y,滿足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三邊為a、b、c(c為斜邊),其中a、b滿足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲乙兩個不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標(biāo)有數(shù)字1,2,3,4,乙口袋中的小球上分別標(biāo)有數(shù)字2,3,4,先從甲袋中任意摸出一個小球,記下數(shù)字為m,再從乙袋中摸出一個小球,記下數(shù)字為n.
(1)請用列表或畫樹狀圖的方法表示出所有(m,n)可能的結(jié)果;
(2)若m,n都是方程x2﹣5x+6=0的解時,則小明獲勝;若m,n都不是方程x2﹣5x+6=0的解時,則小利獲勝,問他們兩人誰獲勝的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租賃公司共有汽車50輛,市場調(diào)查表明,當(dāng)租金為每輛每日200元時可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.
(1)當(dāng)租金提高多少元時,公司的每日收益可達到10120元?
(2)公司領(lǐng)導(dǎo)希望日收益達到10200元,你認(rèn)為能否實現(xiàn)?若能,求出此時的租金,若不能,請說明理由.
(3)汽車日常維護要一定費用,已知外租車輛每日維護費為100元,未租出的車輛維護費為50元,當(dāng)租金為多少元時,公司的利潤恰好為5500元?(利潤=收益一維護費).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
求證:(1)△PAC∽△BPD;
(2)若AC=3,BD=1,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標(biāo)系中,OB 在 x軸上,若 OA=2,將三角板繞原點 O 順時針旋轉(zhuǎn) 75°,則點 A 的對應(yīng)點 A′ 的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=-x2+mx+n與x軸交于點A,B(A在B的左側(cè)).
(1)拋物線的對稱軸為直線x=-3,AB=4.求拋物線的表達式;
(2)平移(1)中的拋物線,使平移后的拋物線經(jīng)過點O,且與x正半軸交于點C,記平移后的拋物線頂點為P,若△OCP是等腰直角三角形,求點P的坐標(biāo);
(3)當(dāng)m=4時,拋物線上有兩點M(x1,y1)和N(x2,y2),若x1<2,x2>2,x1+x2>4,試判斷y1與y2的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于拋物線.
(1)它與x軸交點的坐標(biāo)為 ,與y軸交點的坐標(biāo)為 ,頂點坐標(biāo)為 ;
(2)在坐標(biāo)系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列問題:若關(guān)于x的一元二次方程(t為實數(shù))在<x<的范圍內(nèi)有解,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com