【題目】如圖是由邊長為的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),的頂點(diǎn)在格點(diǎn).請選擇適當(dāng)?shù)母顸c(diǎn)用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由.
(1)如圖,作關(guān)于直線的對稱圖形;
(2)如圖,作的高;
(3)如圖,作的中線;
(4)如圖,在直線上作出一條長度為個(gè)單位長度的線段在的上方,使的值最小.
【答案】(1)圖見解析;(2)圖見解析;(3)圖見解析;(4)圖見解析
【解析】
(1)分別找到A、B、C關(guān)于直線l的對稱點(diǎn),連接、、即可;
(2)如解圖2,連接CH,交AB于點(diǎn)D,利用SAS證出△ACB≌△CGH,從而得出∠BAC=∠HCG,然后利用等量代換即可求出∠CDB=90°;
(3)如解圖3,連接CP交AB于點(diǎn)E,利用矩形的性質(zhì)可得AE=BE;
(4)如解圖4,找出點(diǎn)A關(guān)于l的對稱點(diǎn)A1,設(shè)點(diǎn)A1正下方的格點(diǎn)為C,連接CB,交直線l于點(diǎn)N,設(shè)點(diǎn)B正上方的格點(diǎn)為D,連接A1D,交直線l于點(diǎn)M,連接AM,根據(jù)平行四邊形的性質(zhì)和兩點(diǎn)之間線段最短即可推出此時(shí)MN即為所求.
解:(1)分別找到A、B、C關(guān)于直線l的對稱點(diǎn),連接、、,如圖1所示,即為所求;
(2)如圖2所示連接CH,交AB于點(diǎn)D,
在△ACB和△CGH中
∴△ACB≌△CGH
∴∠BAC=∠HCG
∵∠BAC+∠ABC=90°
∴∠HCG+∠ABC=90°
∴∠CDB=90°
∴CD為△ABC的高,故CD即為所求;
(3)如圖3所示,連接CP交AB于點(diǎn)E
由圖可知:四邊形ACBP為矩形
∴AE=EB
∴CE為△ABC的中線,故CE即為所求;
(4)如圖4所示,找出點(diǎn)A關(guān)于l的對稱點(diǎn)A1,設(shè)點(diǎn)A1正下方的格點(diǎn)為C,連接CB,交直線l于點(diǎn)N,設(shè)點(diǎn)B正上方的格點(diǎn)為D,連接A1D,交直線l于點(diǎn)M,連接AM
根據(jù)對稱性可知:AM=A1M
由圖可知:A1C=BD=1個(gè)單位長度,A1C∥BD∥直線l
∴四邊形A1CBD為平行四邊形
∴A1D∥BC
∴四邊形A1CNM和四邊形MNBD均為平行四邊形
∴A1M=CN,MN=BD=1個(gè)單位長度
∴AM=CN
∴AM+NB=CN+NB=CB,
根據(jù)兩點(diǎn)之間線段最短,此時(shí)AM+NB最小,而MN=1個(gè)單位長度為固定值,
∴此時(shí)最小,故此時(shí)MN即為所求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,點(diǎn)、分別在、上運(yùn)動(dòng)(不與點(diǎn)重合).
(1)如圖1,是的平分線,的反方向延長線與的平分線交于點(diǎn).
①若,則為多少度?請說明理由.
②猜想:的度數(shù)是否隨、的移動(dòng)發(fā)生變化?請說明理由.
(2)如圖2,若,,則的大小為 度(直接寫出結(jié)果);
(3)若將“”改為“()”,且,,其余條件不變,則的大小為 度(用含、的代數(shù)式直接表示出米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點(diǎn)P是y=的圖象上一動(dòng)點(diǎn),PC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)B.給出如下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會(huì)發(fā)生變化;④CA=AP.其中所有正確結(jié)論的序號是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,、都是等腰三角形,且,,,、相交于點(diǎn),點(diǎn)、分別是線段、的中點(diǎn).以下4個(gè)結(jié)論:①;②;③是等邊三角形;④連,則平分以上四個(gè)結(jié)論中正確的是:______.(把所有正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市扶貧辦在精準(zhǔn)扶貧工作中,組織30輛汽車裝運(yùn)花椒、核桃、甘藍(lán)向外地銷售.按計(jì)劃30輛車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:
產(chǎn)品名稱 | 核桃 | 花椒 | 甘藍(lán) |
每輛汽車運(yùn)載量(噸) | 10 | 6 | 4 |
每噸土特產(chǎn)利潤(萬元) | 0.7 | 0.8 | 0.5 |
若裝運(yùn)核桃的汽車為x輛,裝運(yùn)甘藍(lán)的車輛數(shù)是裝運(yùn)核桃車輛數(shù)的2倍多1,假設(shè)30輛車裝運(yùn)的三種產(chǎn)品的總利潤為y萬元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若裝花椒的汽車不超過8輛,求總利潤最大時(shí),裝運(yùn)各種產(chǎn)品的車輛數(shù)及總利潤最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,2)
(1)求拋物線的表達(dá)式;
(2)拋物線的對稱軸與x軸交于點(diǎn)M,點(diǎn)D與點(diǎn)C關(guān)于點(diǎn)M對稱,試問在該拋物線的對稱軸上是否存在點(diǎn)P,使△BMP與△ABD相似?若存在,請求出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分線,DE⊥BC,垂足為D.
(1)請你寫出圖中所有的等腰三角形;
(2)請你判斷AD與BE垂直嗎?并說明理由.
(3)如果BC=10,求AB+AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com