【題目】如圖,,點(diǎn)、分別在、上運(yùn)動(dòng)(不與點(diǎn)重合).
(1)如圖1,是的平分線,的反方向延長線與的平分線交于點(diǎn).
①若,則為多少度?請說明理由.
②猜想:的度數(shù)是否隨、的移動(dòng)發(fā)生變化?請說明理由.
(2)如圖2,若,,則的大小為 度(直接寫出結(jié)果);
(3)若將“”改為“()”,且,,其余條件不變,則的大小為 度(用含、的代數(shù)式直接表示出米).
【答案】(1)①45°,理由見解析;②∠D的度數(shù)不變;理由見解析(2)30 ;(3)
【解析】
(1)①先求出∠ABN=150°,再根據(jù)角平分線得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性質(zhì)可得∠D度數(shù);
②設(shè)∠BAD=α,利用外角性質(zhì)和角平分線性質(zhì)求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;
(2)設(shè)∠BAD=α,得∠BAO=3α,繼而求得∠ABN=90°+3α、∠ABC=30°+α,根據(jù)∠D=∠ABC-∠BAD可得答案;
(3)設(shè)∠BAD=β,分別求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=+β,由∠D=∠ABC-∠BAD得出答案.
解:(1)①45°
∵∠BAO=60°,∠MON=90°,
∴∠ABN=150°,
∵BC平分∠ABN、AD平分∠BAO,
∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°
∴∠D=∠CBA-∠BAD=45°,
②∠D的度數(shù)不變.
理由是:設(shè)∠BAD=α,
∵AD平分∠BAO,
∴∠BAO=2α,
∵∠AOB=90°,
∴∠ABN=∠AOB+∠BAO=90°+2α,
∵BC平分∠ABN,
∴∠ABC=45°+α,
∴∠D=∠ABC-∠BAD=45°+α-α=45°;
(2)設(shè)∠BAD=α,
∵∠BAD=∠BAO,
∴∠BAO=3α,
∵∠AOB=90°,
∴∠ABN=∠AOB+∠BAO=90°+3α,
∵∠ABC=∠ABN,
∴∠ABC=30°+α,
∴∠D=∠ABC-∠BAD=30°+α-α=30°;
(3)設(shè)∠BAD=β,
∵∠BAD=∠BAO,
∴∠BAO=nβ,
∵∠AOB=α°,
∴∠ABN=∠AOB+∠BAO=α+nβ,
∵∠ABC=∠ABN,
∴∠ABC=+β,
∴∠D=∠ABC-∠BAD=+β-β=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.
(1)①求的值;②求∠ACD的度數(shù).
(2)拓展探究
如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請直接寫出CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小黃站在河岸上的點(diǎn),看見河里有一小船沿垂直于岸邊的方向劃過來.此時(shí),測得小船的俯角是,若小黃的眼睛與地面的距離是米,米,平行于所在的直線,迎水坡的坡度為,坡長米,則此時(shí)小船到岸邊的距離的長為( )米.(,結(jié)果保留兩位有效數(shù)字)
A. 11 B. 8.5 C. 7.2 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組在“用面積驗(yàn)證平方差公式”時(shí),經(jīng)歷了如下的探究過程;
(1)小明的想法是:將邊長為的正方形右下角剪掉一個(gè)邊長為的正方形(如圖1),將剩下部分按照虛線分割成①和②兩部分,并用兩種方式表示這兩部分面積的和,請你按照小明的想法驗(yàn)證平方差公式.
(2)小白的想法是:在邊長為的正方形內(nèi)部任意位置剪掉一個(gè)邊長為的正方形(如圖2),再將剩下部分進(jìn)行適當(dāng)分割,并將分割得到的幾部分面積和用兩種方式表示出來,請你按照小白的想法在圖中用虛線畫出分割線,并驗(yàn)證平方差公式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點(diǎn).若E為邊OA上的一個(gè)動(dòng)點(diǎn),當(dāng)△CDE的周長最小時(shí),則點(diǎn)E的坐標(biāo)____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點(diǎn)O,
(1)如圖2,將△AOD沿DB平移,使點(diǎn)D與點(diǎn)O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.
(2)如圖3,將△A′BO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)交AB于點(diǎn)E′,交BC于點(diǎn)F,
①求證:BE′+BF=2,
②求出四邊形OE′BF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠需要在規(guī)定時(shí)間內(nèi)生產(chǎn)1000個(gè)某種零件,該工廠按一定速度加工6天后,發(fā)現(xiàn)按此速度加工下去會延期4天完工,于是又抽調(diào)了一批工人投入這種零件的生產(chǎn),使工作效率提高了,結(jié)果如期完成生產(chǎn)任務(wù).
(1)求該工廠前6天每天生產(chǎn)多少個(gè)這種零件;
(2)求規(guī)定時(shí)間是多少天.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),的頂點(diǎn)在格點(diǎn).請選擇適當(dāng)?shù)母顸c(diǎn)用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由.
(1)如圖,作關(guān)于直線的對稱圖形;
(2)如圖,作的高;
(3)如圖,作的中線;
(4)如圖,在直線上作出一條長度為個(gè)單位長度的線段在的上方,使的值最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com