【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°。
①當(dāng)點(diǎn)D在AC上時(shí),如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?寫出你猜想的結(jié)論,并說明理由;
②將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)說明理由。
【答案】①BD=CE,BD⊥CE,理由見解析;②BD=CE,BD⊥CE,理由見解析.
【解析】
試題分析:①BD=CE,BD⊥CE.根據(jù)全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的對(duì)應(yīng)邊相等證得BD=CE、對(duì)應(yīng)角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形內(nèi)角和定理可以求得∠CFD=90°,即BD⊥CF;②BD=CE,BD⊥CE.根據(jù)全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的對(duì)應(yīng)邊相等證得BD=CE、對(duì)應(yīng)角相等∠ABF=∠ECA;作輔助線(延長(zhǎng)BD交AC于F,交CE于H)BH構(gòu)建對(duì)頂角∠ABF=∠HCF,再根據(jù)三角形內(nèi)角和定理證得∠BHC=90°;
試題解析:解:①結(jié)論:BD=CE,BD⊥CE;理由如下:
在△ABD與△ACE中,
AB=AC,AD=AE,∠BAC=∠DAE=90°
∴△ABD≌△ACE(SAS)
∴BD=CE
如圖(1),延長(zhǎng)BD交CE于F,
∠ABD=∠ACE,∠ADB=∠CDF=∠EAC,
∴BD⊥CE
②結(jié)論:BD=CE,BD⊥CE
理由如下:∵∠BAC=∠DAE=90°
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE
在△ABD與△ACE中,
∵
∴△ABD≌△ACE(SAS)
∴BD=CE
如圖(2)延長(zhǎng)BD交AC于F,交CE于H.
在△ABF與△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC
∴∠CHF=∠BAF=90°
∴BD⊥CE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識(shí))數(shù)軸上有兩點(diǎn) A、B 對(duì)應(yīng)的數(shù)為 a、b,AB表示這兩個(gè)點(diǎn)間的距離,這兩個(gè)點(diǎn)的中點(diǎn)所對(duì)應(yīng)的數(shù)為.
已知數(shù)軸上有三點(diǎn) A、B、C,對(duì)應(yīng)的數(shù)分別為 a、b、c,a、b、c 滿足以下兩個(gè)條件:①② a-b+c=0.
(1)求出 a、b、c 的值;
(2)若數(shù)軸上有一點(diǎn) P,PA=3PB,求出滿足條件的P點(diǎn)所對(duì)應(yīng)的數(shù);
(3)點(diǎn)A以每秒鐘2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),點(diǎn)B以每秒鐘4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),點(diǎn)C以每秒鐘6個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).它們同時(shí)出發(fā),M為AB 的中點(diǎn),N為BC的中點(diǎn),Q為AC的中點(diǎn),O為原點(diǎn),試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
為了響應(yīng)“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個(gè)人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質(zhì)量為160克,已知每頁(yè)薄型紙比厚型紙輕0.8克,求A4薄型紙每頁(yè)的質(zhì)量.(墨的質(zhì)量忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點(diǎn)坐標(biāo)為(﹣4,0),B點(diǎn)坐標(biāo)為(6,0),點(diǎn)D為AC的中點(diǎn),點(diǎn)E為線段AB上一動(dòng)點(diǎn),連接DE經(jīng)過點(diǎn)A、B、C三點(diǎn)的拋物線的解析式為y=ax2+bx+8.
(1)求拋物線的解析式;
(2)如圖①,將△ADE以DE為軸翻折,點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求G點(diǎn)的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)E在線段AB上運(yùn)動(dòng)時(shí),拋物線y=ax2+bx+8的對(duì)稱軸上是否存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了50名學(xué)生,并統(tǒng)計(jì)他們平均每天的課外閱讀時(shí)間t(單位:min),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計(jì)表.
課外閱讀時(shí)間t | 頻數(shù) | 百分比 |
10≤t<30 | 4 | 8% |
30≤t<50 | 8 | 16% |
50≤t<70 | a | 40% |
70≤t<90 | 16 | b |
90≤t<110 | 2 | 4% |
合計(jì) | 50 | 100% |
請(qǐng)根據(jù)圖表中提供的信息回答下列問題:
(1)a= ,b= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若全校有900名學(xué)生,估計(jì)該校有多少學(xué)生平均每天的課外閱讀時(shí)間不少于50min?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有如下一組單項(xiàng)式:7x3z2,8x3y,x2yz,-3xy2z,9x4zy,zy2,-xyz,9y3z,xz2y,0,3z3.我們用下面的方法確定它們的先后次序:對(duì)任兩個(gè)單項(xiàng)式,先看x的指數(shù),規(guī)定x的指數(shù)高的單項(xiàng)式排在x的指數(shù)低的單項(xiàng)式前面;若x的指數(shù)相同,則再看y的指數(shù),規(guī)定y的指數(shù)高的單項(xiàng)式排在y的指數(shù)低的單項(xiàng)式前面;若y的指數(shù)也相同,則再看z的指數(shù),規(guī)定z的指數(shù)高的單項(xiàng)式排在z的指數(shù)低的單項(xiàng)式前面.將這組單項(xiàng)式按上述方法排序,那么,9y3z應(yīng)排在第幾位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,分別探究下面兩個(gè)圖形中∠APC和∠PAB、∠PCD的關(guān)系,請(qǐng)從你所得兩個(gè)關(guān)系中選出任意一個(gè),說明你探究的結(jié)論的正確性.
結(jié)論:(1)
(2)
選擇結(jié)論: ,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度數(shù).
(2)求四邊形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com