【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度數(shù).
(2)求四邊形ABCD的面積.
【答案】(1)∠BAD=135°;(2)四邊形ABCD的面積 2+
【解析】試題分析:(1)由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可證△ACD是直角三角形,于是有∠CAD=90°,從而易求∠BAD.
(2)連接AC,則可以計(jì)算△ABC的面積,根據(jù)AB、BC可以計(jì)算AC的長(zhǎng),根據(jù)AC,AD,CD可以判定△ACD為直角三角形,根據(jù)AD,CD可以計(jì)算△ACD的面積,四邊形ABCD的面積為△ABC和△ACD面積之和.
試題解析:
(1)∵∠B=90°,AB=BC=2,
∴AC= =2 ,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2,
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠DAB=45°+90°=135°.
故∠DAB的度數(shù)為135°.
(2)連接AC,如圖所示:
在直角△ABC中,AC為斜邊,且AB=BC=2,則AC=,
∵AD=1,CD=3,
∴AC2+CD2=AC2,
即△ACD為直角三角形,且∠ADC=90°,
四邊形ABCD的面積=S△ABC+S△ACD=AB×BC+AD×AC=2+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°。
①當(dāng)點(diǎn)D在AC上時(shí),如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?寫出你猜想的結(jié)論,并說明理由;
②將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD∥CO,連結(jié)CD
(1)求證:CD是⊙O的切線;
(2)若AB=2,CD= ,求AD的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)最大的水果公司“佳沃鑫榮懋”旗下子公司“歡樂果園”購(gòu)進(jìn)某種水果的成本為20元/kg,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(jià)p(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為P= ,且其日銷售量y(kg)與時(shí)間t(天)的關(guān)系如表:
時(shí)間t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日銷售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤(rùn)最大?最大日銷售利潤(rùn)為多少?
(3)在實(shí)際銷售前24天中,子公司決定每銷售1kg水果就捐贈(zèng)n元利潤(rùn)(n<9)給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在數(shù)軸上表示的數(shù)是﹣2,點(diǎn)B表示+6,P、Q兩點(diǎn)同時(shí)分別以1個(gè)單位/秒和3個(gè)單位/秒的速度從A、B兩點(diǎn)出發(fā),沿?cái)?shù)軸規(guī)則運(yùn)動(dòng)
(1)求線段AB的長(zhǎng)度;
(2)如果P、Q兩點(diǎn)在數(shù)軸上相向移動(dòng),問幾秒鐘后PQ=AB?
(3)如果P、Q兩點(diǎn)在數(shù)軸上同時(shí)沿?cái)?shù)軸負(fù)半軸方向移動(dòng)(Q在P的左側(cè)),若M、N分別是PA和BQ中點(diǎn),問是否存在這樣的時(shí)間t,使得線段MN=AB?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC中點(diǎn),過O點(diǎn)的直線分別于AB、CD交于E、F,連結(jié)BF交AC與點(diǎn)M,連結(jié)DE、BO,若∠COB=60°,F(xiàn)O=FC
求證:①FB⊥OC,OM=CM;
②四邊形EBFD是菱形;
③MB:OE=3:2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,點(diǎn)E、F分別是邊AD、AB的中點(diǎn),連接EF.
(1)如圖1,若點(diǎn)G是邊BC的中點(diǎn),連接FG,則EF與FG關(guān)系為: ;
(2)如圖2,若點(diǎn)P為BC延長(zhǎng)線上一動(dòng)點(diǎn),連接FP,將線段FP以點(diǎn)F為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)900,得到線段FQ,連接EQ,請(qǐng)猜想EF、EQ、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P為CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,在圖3中補(bǔ)全圖形,并直接寫出EF、EQ、BP三者之間的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B、C、D、E在同一直線上,且AC=BD,E是線段BC的中點(diǎn).
(1)點(diǎn)E是線段AD的中點(diǎn)嗎?說明理由;
(2)當(dāng)AD=10,AB=3時(shí),求線段BE的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com