【題目】規(guī)定一種新的運(yùn)算△:abaab)﹣ab.例如,121×(12)﹣124

189   ;

2)若x311,求x的值;

3)求代數(shù)式﹣x4的最小值.

【答案】1137;2x12x2=﹣4;3

【解析】

1)根據(jù)abaab)﹣ab,可以求得所求式子的值;

2)根據(jù)abaab)﹣ab,可以求得所求方程的解;

3)根據(jù)abaab)﹣ab,可以將題目中的代數(shù)式化簡,然后利用二次函數(shù)的性質(zhì),即可得到所求代數(shù)式的最小值.

解:(1)∵abaab)﹣ab,

89

89)﹣89

8×1789

13689

137,

故答案為:137;

2)∵x311,

xx3)﹣x311,

解得,2,=﹣4

3)∵﹣x4

=﹣x(﹣x4)+x4

x24xx4

3x4

,

∴當(dāng)x時(shí),﹣x4有最小值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAB的中點(diǎn),以CD為直徑的O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過點(diǎn)FFGAB于點(diǎn)G

1)試判斷FGO的位置關(guān)系,并說明理由;

2)若AC=6,CD5,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過坐標(biāo)原點(diǎn)和,兩點(diǎn).

1)求該拋物線的表達(dá)式;

2)在線段右側(cè)的拋物線上是否存在一點(diǎn),使得的面積為兩部分?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC,∠ABC45°,ADBCD,BEACE,交ADF

1)求證:△BDF≌△ADC;

2)若BD4,DC3,求線段BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)I為△ABC的內(nèi)心,AB4cmAC3cm,BC2cm,將∠ACB平移,使其頂點(diǎn)與點(diǎn)I重合,則圖中陰影部分的周長為( )

A.1cmB.2cmC.3cmD.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究.

如圖,在平面直角坐標(biāo)系中,A(08),C(6,0),以OA,C為頂點(diǎn)作矩形OABC,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AO4個(gè)單位每秒的速度向O運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OC3個(gè)單位每秒的速度向C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)動(dòng)點(diǎn)P,Q中的任何一個(gè)點(diǎn)到達(dá)終點(diǎn)后,兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接PQ

(情景導(dǎo)入)當(dāng)t1時(shí),求出直線PQ的解析式.

(深入探究)①連接AC,若△POQ與△AOC相似,求出t的值.

②如圖,取PQ的中點(diǎn)M,以QM為半徑向右側(cè)作半圓M,直接寫出半圓M的面積的最小值,并直接寫出此時(shí)t的值.

(拓展延伸)如圖,過點(diǎn)A作半圓M的切線,交直線BC于點(diǎn)H,于半圓M切于點(diǎn)N

①在P,Q的整個(gè)運(yùn)動(dòng)過程中,點(diǎn)H的運(yùn)動(dòng)路徑為   

②若固定點(diǎn)H(6,2)不動(dòng),則在整個(gè)運(yùn)動(dòng)過程中,半圓M能否與梯形AOCH相切?若能,求出此時(shí)t的值;若不能,請證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國魏晉時(shí)期的數(shù)學(xué)家劉徽創(chuàng)立了割圓術(shù),認(rèn)為圓內(nèi)接正多邊形邊數(shù)無限增加時(shí),周長就越接近圓周長,由此求得了圓周率π的近似值,設(shè)半徑為r的圓內(nèi)接正n邊形的周長為L,圓的直徑為d,如圖所示,當(dāng)n6時(shí),π≈3,那么當(dāng)n12時(shí),π≈________(結(jié)果精確到0.01,參考數(shù)據(jù):sin15°cos75°≈0.259)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠MCN45°,點(diǎn)B在射線CM上,點(diǎn)A是射線CN上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合).點(diǎn)B關(guān)于CN的對稱點(diǎn)為點(diǎn)D,連接AB、ADCD,點(diǎn)F在直線BC上,且滿足AFAD.小明在探究圖形運(yùn)動(dòng)的過程中發(fā)現(xiàn)AFAB:始終成立.

如圖,當(dāng)<∠BAC90°時(shí).

求證:AFAB;

用等式表示線段之間的數(shù)量關(guān)系,并證明;

當(dāng)90°<∠BAC135°時(shí),直接用等式表示線段CF、CDCA之間的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是ABC的外接圓,BC為O的直徑,點(diǎn)E為ABC的內(nèi)心,連接AE并延長交O于D點(diǎn),連接BD并延長至F,使得BD=DF,連接CF、BE.

(1)求證:DB=DE;

(2)求證:直線CF為O的切線.

查看答案和解析>>

同步練習(xí)冊答案