【題目】為了方便游客觀賞景點(diǎn),某景區(qū)設(shè)計(jì)建造了如圖所示的高為6米的觀景臺(tái),且坡面的坡度比為1:1.后來(lái)為了方便行人推車(如子女帶老人旅游等),決定降低坡度,新坡面的坡度比為

1)求新坡面的坡角

2)原坡面底部的正前方13米(的長(zhǎng))有一座古建筑,為保護(hù)文物,當(dāng)?shù)匚奈锕芾聿块T規(guī)定,坡面底部至少距古建筑7米,請(qǐng)問(wèn)新的設(shè)計(jì)方案能否通過(guò),試說(shuō)明理由.(參考數(shù)據(jù):,

【答案】(1)30°;(2)能通過(guò),理由詳見(jiàn)解析

【解析】

1)根據(jù)坡度比和三角函數(shù)的定義,即可求出坡角;

2)根據(jù)題意,過(guò)點(diǎn)于點(diǎn),求出AH,BH的長(zhǎng)度,然后求出AE的長(zhǎng)度,即可得到答案.

解:(1)新坡面的坡度比為,

,

答:新坡面的坡角30°

2)如圖,過(guò)點(diǎn)于點(diǎn),則米.

坡面的坡度比為1:1,新坡面的坡度比為,

米,米,

(米)

米,

新的設(shè)計(jì)方案能通過(guò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,BE平分∠ABCAC于點(diǎn)E,點(diǎn)DAB邊上且DEBE

1)判斷直線ACDBE外接圓的位置關(guān)系,并說(shuō)明理由;

2)若AD6AE6,求DBE外接圓的半徑及CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形中,平分且交邊于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,并延長(zhǎng)于點(diǎn)

1)求證:;

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10

1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;

2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;

3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案

方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;

方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25

請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種商品每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間滿足關(guān)系:y=ax2+bx﹣75.其圖象如圖.

(1)銷售單價(jià)為多少元時(shí),該種商品每天的銷售利潤(rùn)最大?最大利潤(rùn)為多少元?

(2)銷售單價(jià)在什么范圍時(shí),該種商品每天的銷售利潤(rùn)不低于16元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)二次函數(shù)yx2+2mx+1,當(dāng)0x≤4時(shí)函數(shù)值總是非負(fù)數(shù),則實(shí)數(shù)m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,通過(guò)畫圖發(fā)現(xiàn),無(wú)論取何值,拋物線總會(huì)經(jīng)過(guò)兩個(gè)定點(diǎn)

直接寫出這兩個(gè)定點(diǎn)的坐標(biāo) ;

若將此拋物線向右平移個(gè)單位,再向上平移個(gè)單位,平移后的拋物線頂點(diǎn)都在某個(gè)函數(shù)的圖象上,求這個(gè)新函數(shù)的解析式(不必寫自變量取值范圍);

若拋物線與直線有兩個(gè)交點(diǎn).且,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l過(guò)點(diǎn)A(4,0)和點(diǎn)B(0,4),它與二次函數(shù)yax22的圖象交于點(diǎn)P,若AOP的面積為,求二次函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案