【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB邊上且DE⊥BE.
(1)判斷直線AC與△DBE外接圓的位置關(guān)系,并說(shuō)明理由;
(2)若AD=6,AE=6,求△DBE外接圓的半徑及CE的長(zhǎng).
【答案】(1)直線AC與△DBE外接圓相切,理由見(jiàn)解析;(2)外接圓的半徑為3,CE的長(zhǎng)為2
【解析】
(1)連接,根據(jù)直線與圓相切的判定定理,需證明,即,已知,則需證明,根據(jù)等腰三角形結(jié)合平分的條件即可證明.
(2)根據(jù)已知條件,可設(shè)圓的半徑為,在中根據(jù)勾股定理列方程解答即可;求,可過(guò)作于,根據(jù)角平分線的性質(zhì)可得,故在中用等面積法求即可.
解:(1)直線AC與△DBE外接圓相切.理由:
∵DE⊥BE
∴BD為△DBE外接圓的直徑
取BD的中點(diǎn)O(即△DBE外接圓的圓心),連接OE
∴OE=OB
∴∠OEB=∠OBE
∵BE平分∠ABC
∴∠OBE=∠CBE
∴∠OEB=∠CBE
∵∠CBE+∠CEB=90°
∴∠OEB+∠CEB=90°
即OE⊥AC
∴直線AC與△DBE外接圓相切;
(2)設(shè)⊙O的半徑為r,則在Rt△AOE中,AD=6,AO=r+6,AE=6,
OA2=OE2+AE2,
即:(r+6)2=r2+(6)2,
解得:r=3
則△BDE的外接圓的半徑為3.
過(guò)點(diǎn)E作EF⊥AB于F,
∵BE平分∠ABC,∠C=90°
∴EF=EC
在Rt△AOE中,AO=6+3=9,
EF=
∴CE=EF=2
∴外接圓的半徑為3,CE的長(zhǎng)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙C的半徑為2,圓外一點(diǎn)O滿足OC=3.5,點(diǎn)P為⊙C上一動(dòng)點(diǎn),經(jīng)過(guò)點(diǎn)O的直線l上有兩點(diǎn)A、B,且OA=OB,∠APB=90°,l不經(jīng)過(guò)點(diǎn)C,則AB的最小值為( )
A. 2 B. 2.5 C. 3 D. 3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是的平均數(shù),即,則方差,它反映了這組數(shù)的波動(dòng)性,
(1)證明:對(duì)任意實(shí)數(shù)a,x1a,x2a,…,xna,與x1,x2,…,xn 方差相同;
(2)證明;
(3)以下是我校初三(1)班 10 位同學(xué)的身高(單位:厘米):
169,172,163,173,175,168,170,167,170,171,計(jì)算這組數(shù)的方差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的外接圓,,作直線,于.
(1)圖1,求證:是的切線;
(2)圖2,交于點(diǎn),過(guò)點(diǎn)作,垂足為,交于點(diǎn).
①求證:;
②若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,四邊形ABCD為⊙O的內(nèi)接四邊形,點(diǎn)P在BA的延長(zhǎng)線上,PD與⊙O相切,D為切點(diǎn),若∠BCD=125°,則∠ADP的大小為( )
A.25°B.40°C.35°D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系內(nèi),已知A(2,3),B(4,1),直線l過(guò)P(m,0),A、B關(guān)于l的對(duì)稱點(diǎn)分別為A’、B’,請(qǐng)利用直尺(無(wú)刻度)和圓規(guī)按下列要求作圖.
(1)當(dāng)A’與B重合時(shí),請(qǐng)?jiān)趫D1中畫(huà)出點(diǎn)P位置,并求出m的值;
(2)當(dāng)A’、B’都落在y軸上時(shí),請(qǐng)?jiān)趫D2中畫(huà)出直線l,并求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)省材料,某農(nóng)場(chǎng)主利用圍墻(圍墻足夠長(zhǎng))為一邊,用總長(zhǎng)為80m的籬笆圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,則能?chē)傻木匦螀^(qū)域ABCD的面積最大值是___m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開(kāi)通運(yùn)營(yíng).截至2017年1月,北京地鐵共有19條運(yùn)營(yíng)線路,覆蓋北京市11個(gè)轄區(qū).據(jù)統(tǒng)計(jì),2017 年地鐵每小時(shí)客運(yùn)量是2002年地鐵每小時(shí)客運(yùn)量的4倍,2017年客運(yùn)240萬(wàn)人所用的時(shí)間比2002年客運(yùn)240萬(wàn)人所用的時(shí)間少30小時(shí),求2017年地鐵每小時(shí)的客運(yùn)量?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了方便游客觀賞景點(diǎn),某景區(qū)設(shè)計(jì)建造了如圖所示的高為6米的觀景臺(tái),且坡面的坡度比為1:1.后來(lái)為了方便行人推車(chē)(如子女帶老人旅游等),決定降低坡度,新坡面的坡度比為.
(1)求新坡面的坡角.
(2)原坡面底部的正前方13米(的長(zhǎng))有一座古建筑,為保護(hù)文物,當(dāng)?shù)匚奈锕芾聿块T(mén)規(guī)定,坡面底部至少距古建筑7米,請(qǐng)問(wèn)新的設(shè)計(jì)方案能否通過(guò),試說(shuō)明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com