【題目】如圖,在正方形OABC中,點B的坐標(biāo)是(4,4),點E、F分別在邊BC、BA上,OE=2,若∠EOF=45°,則F點的縱坐標(biāo)是( )

A. B. 1 C. D. -1

【答案】A

【解析】分析:如圖連接EF,延長BA使得AM=CE,則△OCE≌△OAM.再證明△OFE≌△FOM,根據(jù)全等三角形的性質(zhì)和圖形即可得EF=FM=AF+AM=AF+CE,根據(jù)勾股定理求得OE的長,設(shè)AF=x,則EF=2+x,EB=2,F(xiàn)B=4-x,在Rt△BEF中,根據(jù)勾股定理可得方程(2+x)2=22+(4-x)2,解方程求得x值,即可得點F的縱坐標(biāo).

詳解:如圖連接EF,延長BA使得AM=CE,則△OCE≌△OAM.

∴OE=OM,∠COE=∠MOA,

∵∠EOF=45°,

∴∠COE+∠AOF=45°,

∴∠MOA+∠AOF=45°,

∴∠EOF=∠MOF,

在△OFE和△OFM中,

,

∴△OFE≌△FOM,

∴EF=FM=AF+AM=AF+CE,設(shè)AF=x,

CE=,

∴EF=2+x,EB=2,F(xiàn)B=4-x,

∴(2+x)2=22+(4-x)2

x=,

∴點F的縱坐標(biāo)為,

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.

(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB中,A(-8,0),B(0, ),AC平分∠OAB,交y軸于點C,點P是x軸上一點,⊙P經(jīng)過點A、C,與x軸于點D,過點C作CE⊥AB,垂足為E,EC的延長線交x軸于點F,

(1)求⊙P的半徑;
(2)求證:EF為⊙P的切線;
(3)若點H是 上一動點,連接OH、FH,當(dāng)點P在 上運動時,試探究 是否為定值?若為定值,求其值;若不是定值,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)中y=ax2+bx﹣3的x、y滿足表:

x

﹣1

0

1

2

3

y

0

﹣3

﹣4

﹣3

m


(1)求該二次函數(shù)的解析式;
(2)求m的值并直接寫出對稱軸及頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃成立學(xué)生社團,要求每一位學(xué)生都選擇一個社團,為了了解學(xué)生對不同社團的喜愛情況,學(xué)校隨機抽取了部分學(xué)生進行“我最喜愛的一個學(xué)生社團”問卷調(diào)查,規(guī)定每人必須并且只能在“文學(xué)社團”、“科學(xué)社團”、“書畫社團”、“體育社團”和“其他”五項中選擇一項,并將統(tǒng)計結(jié)果繪制了如下兩個不完整的統(tǒng)計圖表.

社團名稱

人數(shù)

文學(xué)社團

18

科技社團

a

書畫社團

45

體育社團

72

其他

b

請解答下列問題:

(1)a=   ,b=   

(2)在扇形統(tǒng)計圖中,“書畫社團”所對應(yīng)的扇形圓心角度數(shù)為   ;

(3)若該校共有3000名學(xué)生,試估計該校學(xué)生中選擇“文學(xué)社團”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,E、F分別是BC、AC的中點,以AC為斜邊作Rt△ADC.

(1)求證:FE=FD;

(2)若∠CAD=∠CAB=24°,求∠EDF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx﹣4與x軸交于A,B兩點,(點B在點A的右側(cè))且A,B兩點的坐標(biāo)分別為(﹣2,0)、(8,0),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l交拋物線于點Q,交BD于點M.

(1)求拋物線的解析式;
(2)當(dāng)點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?
(3)在(2)的結(jié)論下,試問拋物線上是否存在點N(不同于點Q),使三角形BCN的面積等于三角形BCQ的面積?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一張紙片ABCD,∠B>90°,點E是AB的中點,點G是BC上的一個動點,沿BG將紙片折疊,使點B落在紙片上的點F處,連接AF,則下列各角中與∠BEG不一定相等的是(
A.∠FEG
B.∠EAF
C.∠AEF
D.∠EFA

查看答案和解析>>

同步練習(xí)冊答案