【題目】如圖,在邊長為8的正方形中,、分別是邊、上的動點(diǎn),且中點(diǎn),是邊上的一個動點(diǎn),則的最小值是(

A.10B.C.D.

【答案】B

【解析】

延長CDC′,使CDCDCPPMCPPM,當(dāng)C′,P,N三點(diǎn)共線時,CPPM的值最小,根據(jù)題意,點(diǎn)M的軌跡是以B為圓心,3為半徑的圓弧上,圓外一點(diǎn)C′到圓上一點(diǎn)M距離的最小值CMCB3,根據(jù)勾股定理即可得到結(jié)論.

延長CDC′,使CDCD

CPPMCPPM,

當(dāng)C′,P,M三點(diǎn)共線時,CPPM的值最小,

根據(jù)題意,點(diǎn)M的軌跡是以B為圓心,3為半徑的圓弧上,

圓外一點(diǎn)C′到圓上一點(diǎn)M距離的最小值CMCB3

BCCD8,

CC′=16,

CB,

CPPM的最小值是3

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于點(diǎn)A(10),與y軸交于點(diǎn)C(0,3),且對稱軸方程為

1)求拋物線與軸的另一個交點(diǎn)B的坐標(biāo);

2)求拋物線的解析式;

3)設(shè)拋物線的頂點(diǎn)為D,在其對稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;

4)若點(diǎn)M是拋物線上一點(diǎn),以B、CD、M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點(diǎn)叫做格點(diǎn)ABC的三個頂點(diǎn)A,B,C都在格點(diǎn)上ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)90°得到AB′C′

1在正方形網(wǎng)格中,畫出AB′C′;

2計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(1,t+1),B(t-5-1)兩點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若點(diǎn)(c,p)(n,q)是反比例函數(shù)y圖象上任意兩點(diǎn),且滿足cn+1時,求的值.

(3)若點(diǎn)M(x1,y1)N(x2y2)在直線AB(不與A、B重合)上,過M、N兩點(diǎn)分別作y軸的平行線交雙曲線于E、F,已知x1-3,0x21,當(dāng)x1x2-3時,判斷四邊形NFEM的形狀.并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一居民樓前方處有一建筑物,小敏在居民樓的頂部處和底部處分別測得建筑物頂部的仰角為,求居民樓的高度和建筑物的高度(結(jié)果取整數(shù))

(參考數(shù)據(jù):,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一居民樓前方處有一建筑物,小敏在居民樓的頂部處和底部處分別測得建筑物頂部的仰角為,求居民樓的高度和建筑物的高度(結(jié)果取整數(shù))

(參考數(shù)據(jù):,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)A2,0)的兩條直線分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.

1)求點(diǎn)B的坐標(biāo);

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C、D⊙O上,∠A=2∠BCD,點(diǎn)EAB的延長線上,∠AED=∠ABC

1)求證:DE⊙O相切;

2)若BF=2,DF=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)Ax軸負(fù)半軸上,頂點(diǎn)Bx軸正半軸上.若拋物線p=ax2-10ax+8a0)經(jīng)過點(diǎn)C、D,則點(diǎn)B的坐標(biāo)為________

查看答案和解析>>

同步練習(xí)冊答案