【題目】如圖,過點A(2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)y= (k為常數(shù),k≠0)的圖象交于點A(﹣1,4)和點B(a,1).
(1)求反比例函數(shù)的表達(dá)式和a、b的值;
(2)若A、O兩點關(guān)于直線l對稱,請連接AO,并求出直線l與線段AO的交點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用一個半徑為5cm的定滑輪帶動重物上升,滑輪上一點P旋轉(zhuǎn)了108°,假設(shè)繩索(粗細(xì)不計)與滑輪之間沒有滑動,則重物上升了( 。
A.πcm
B.2πcm
C.3πcm
D.5πcm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,點O是AC邊上一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的平分線于E,交∠DCA的平分線于點F.
(1)求證:EO=FO;
(2)當(dāng)點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數(shù)y= 的圖象上.
(1)求反比例函數(shù)y= 的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點P,使得S△AOP= S△AOB , 求點P的坐標(biāo);
(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標(biāo),并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩種客車共7輛,已知甲種客車載客量是30人,乙種客車載客量是45人.其中,每輛乙種客車租金比甲種客車多100元,5輛甲種客車和2輛乙種客車租金共需2300元.
(1)租用一輛甲種客車、一輛乙種客車各多少元?
(2)設(shè)租用甲種客車x輛,總租車費為y元,求y與x的函數(shù)關(guān)系;在保證275名師生都有座位的前提下,求當(dāng)租用甲種客車多少輛時,總租車費最少,并求出這個最少費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】采摘茶葉是茶農(nóng)一項很繁重的勞動,利用單人便攜式采茶機能大大提高生產(chǎn)效率.實踐證明,一臺采茶機每天可采茶60公斤,是人手工采摘的5倍,購買一臺采茶機需2400元.茶園雇人采摘茶葉,按每采摘1公斤茶葉m元的標(biāo)準(zhǔn)支付雇工工資,一個雇工手工采摘茶葉20天獲得的全部工錢正好購買一臺采茶機.
(1)求m的值;
(2)有兩家茶葉種植戶王家和顧家均雇人采摘茶葉,王家雇用的人數(shù)是顧家的2倍.王家所雇的人中有的人自帶采茶機采摘, 的人手工采摘,顧家所雇的人全部自帶采茶機采摘.某一天,王家付給雇工的工資總額比顧家付給雇工的工資總額少600元.問顧家當(dāng)天采摘了多少公斤茶葉?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com