【題目】直線y=2x+1經(jīng)過點(diǎn)(0,a),則a=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人體中紅細(xì)胞的直徑約為0.000 007 7 m,這個(gè)數(shù)用科學(xué)記數(shù)法表示為( )
A. 77×10-7B. 7.7×10-7C. 0.77×10-5D. 7.7×10-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和39,則△EDF的面積為( )
A.11
B.5.5
C.7
D.3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊上的中點(diǎn),過D點(diǎn)作DE⊥DF,交AB于E,交BC為F,
(1)求證:BE=CF;
(2)若AE=4,F(xiàn)C=3,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥CD,CD⊥BD,∠A=∠FEC.以下是小貝同學(xué)證明CD∥EF的推理過程或理由,請你在橫線上補(bǔ)充完整其推理過程或理由.
證明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°()∴∠ABD+∠CDB=180°.
∴AB∥()()
∵∠A=∠FEC(已知)
∴AB∥()()
∴CD∥EF()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=100°,點(diǎn)D在BC邊上,△ABD和△AFD關(guān)于直線AD對稱,∠FAC的平分線交BC于點(diǎn)G,連接FG.
(1)求∠DFG的度數(shù);
(2)設(shè)∠BAD=θ, ①當(dāng)θ為何值時(shí),△DFG為等腰三角形;
②△DFG有可能是直角三角形嗎?若有,請求出相應(yīng)的θ值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2017的坐標(biāo)為( )
A.(504,﹣504)
B.(﹣504,504)
C.(﹣504,503)
D.(﹣505,504)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com