【題目】如圖,△ABC,△ADE是等邊三角形,B,C,D在同一直線上.
求證:(1)CE=AC+CD;(2)∠ECD=60°.
【答案】證明見解析
【解析】
(1)根據△ABC、△ADE都是等邊三角形,得到AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,推出∠BAD=∠CAE,得到△BAD≌△CAE,根據全等三角形的性質得到BD=EC,即可推出答案;
(2)由(1)知:△BAD≌△CAE,根據平角的意義即可求出∠ECD的度數.
(1)∵△ABC,△ADE是等邊三角形,
∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),
∴BD=EC.∵BD=BC+CD=AC+CD,
∴CE=BD=AC+CD.
(2)由(1)知△BAD≌△CAE,
∴∠ACE=∠ABD=60°,
∴∠ECD=180°-∠ACB-∠ACE=60°.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O沿逆時針方向旋轉90°得到△OA1B1 .
(1)線段OA1的長是 , ∠AOB1的度數是;
(2)連接AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求點B旋轉到點B1的位置所經過的路線的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于點E,BE=4,則AC長為( )
A. 2 B. 3 C. 4 D. 以上都不對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究:如圖①,四邊形 ABCD是正方形,BE⊥BF,BE=BF,求證:△ABE≌△CBF;
方法拓展:如圖②,ABCD是矩形,BC=2AB,BF⊥BE,BF=2BE,若矩形ABCD的面積為40,△ABE的面積為4,求陰影部分圖形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動點D從點A出發(fā)以每秒3個單位的速度運動至點B,過點D作DE⊥AB交射線AC于點E.設點D的運動時間為t秒(t>0).
(1)線段AE的長為 . (用含t的代數式表示)
(2)若△ADE與△ACB的面積比為1:4時,求t的值.
(3)設△ADE與△ACB重疊部分圖形的周長為L,求L與t之間的函數關系式.
(4)當直線DE把△ACB分成的兩部分圖形中有一個是軸對稱圖形時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料并解答下列問題.
你知道嗎?一些代數恒等式可以用平面圖形的面積來表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用圖甲中的①或②的面積表示.
(1)請寫出圖乙所表示的代數恒等式;
(2)畫出一個幾何圖形,使它的面積能表示(a+b)(a+3b)=a2+4ab+3b2;
(3)請仿照上述式子另寫一個含有a,b的代數恒等式,并畫出與之對應的幾何圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請直接寫出旋轉中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com