【題目】如圖,在△ABC中,AD是BC邊上的中線,點E是AD的中點,過點A作AF∥BC交BE的延長線于F,BF交AC于G,連接CF.
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,①試判斷四邊形ADCF的形狀,并證明你的結論;
②若AB=8,BD=5,直接寫出線段AG的長 .
【答案】(1)詳見解析;(2)①四邊形ADCF是菱形;詳見解析;②2
【解析】
(1)由平行線證明三角形全等所缺少的條件,再根據(jù)三角形全等的判定方法證明三角形全等;
(2)①先證四邊形ADCF是平行四邊形,再證明鄰邊相等,便可得出結論;
②證明△AFG∽△CBG,得出AG與AC的比例關系,進而由直角三角形的性質求得AC,便可得AG.
(1)∵AF∥BC,
∴∠AFE=∠DBE,
在△AEF和△DEB中,
,
∴△AEF≌△DEB(AAS);
(2)①四邊形ADCF是菱形,
理由如下:∵△AEF≌△DEB,
∴AF=BD,
∵BD=DC,
∴AF=DC=BC,
又AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,AD是BC邊上的中線,
∴AD=DC,
∴四邊形ADCF是菱形;
②∵AF∥BC,
∴△AFG∽△CBG,
∴
∴
∴AG=,
∵BD=5,AD是BC邊上的中線,
∴BC=2BD=10,
∵∠BAC=90°,AB=8,
∴AC=,
∴AG==2,
故答案為2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過點點,點點是拋物線上任意一點,有下列結論:①; ②一元二次方程的兩個根為和;③若,則;④對于任意實數(shù)總成立.其中正確結論的個數(shù)為 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,函數(shù)()的圖象G與直線交于點A(4,1),點B(1,n)(n≥4,n為整數(shù))在直線l上.
(1)求的值;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記圖象與直線l圍成的區(qū)域(不含邊界)為W.
①當n=5時,求的值,并寫出區(qū)域W內的整點個數(shù);
②若區(qū)域W內恰有5個整點,結合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一部記錄片播放了關于地震的資料及一個有關地震預測的討論,一位專家指出:“在未來20年,A城市發(fā)生地震的機會是三分之二”
對這位專家的陳述下面有四個推斷:
①×20≈13.3,所以今后的13年至14年間,A城市會發(fā)生一次地震;
②大于50%,所以未來20年,A城市一定發(fā)生地震;
③在未來20年,A城市發(fā)生地震的可能性大于不發(fā)生地震的可能性;
④不能確定在未來20年,A城市是否會發(fā)生地震;
其中合理的是( 。
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是三國時期的數(shù)學家趙爽創(chuàng)制的一幅“勾股圓方圖”.將圖2的矩形分割成四個全等三角形和一個正方形,恰好能拼成這樣一個“勾股圓方圖”,則該矩形與拼成的正方形的周長之比為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(4,0),B(0,2),反比例函數(shù)的圖象經(jīng)過矩形ABCD的頂點C,且交邊AD于點E,若E為AD的中點,則k的值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點、,與軸交于點,,、兩點間的距離為,拋物線的對稱軸為.
(1)求拋物線的解析式;
(2)如圖1,對稱軸上是否存在點,使,若存在,求出點的坐標;若不存在,請說明理由.
(3)如圖2,拋物線的頂點為,對稱軸交軸于點,點為拋物線上一點,點不與點重合. 當時,過點分別作軸的垂線和平行線,與軸交于點、與對稱軸交于點,得到矩形,求矩形周長的最大值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2019秋潮陽區(qū)校級月考)已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求△PAD周長的最小值;
(3)拋物線的對稱軸上有一動點M,當△MAD是等腰三角形時,直接寫出M點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com