【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CEABE,BDCE于點(diǎn)FCFBF

1)求證:C的中點(diǎn);

2)若CD4,AC8,則⊙O的半徑為   

【答案】1)見解析;(22.

【解析】

1)由AB是直徑知∠CAB+CBE=90°,由CEAB知∠ECB+CBE=90°,據(jù)此得∠CAB=ECB,由CF=BF知∠FCB=FBC,從而得∠CDB=FBC,即可得證;
2)利用(1)中所得結(jié)論得出BC=CD=4,再根據(jù)勾股定理可求得AB的長,即可得出答案.

解:(1)∵AB是直徑,

∴∠ACB90°,

∴∠CAB+CBE90°,

CEAB

∴∠ECB+CBE90°,

∴∠CAB=∠ECB,

∵∠CAB=∠CDB

∴∠CDB=∠ECB,

又∵CFBF,

∴∠FCB=∠FBC,

∴∠CDB=∠FBC,

圓弧CD =圓弧BC,

C是圓弧BD的中點(diǎn);

2)由(1)知C是圓弧BD的中點(diǎn),

BCCD4,

∵∠ACB90°,

AB 4 ,

∴⊙O的半徑為2,

故答案為:(1)見解析;(22

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于點(diǎn)AB(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;

(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過MMNy軸交直線BC于點(diǎn)N,求線段MN的最大值;

(3)E是拋物線對(duì)稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和若和為奇數(shù)則小明勝;若和為偶數(shù),則小亮勝

(1)請(qǐng)你用畫樹狀圖或列表的方法求出這兩數(shù)和為6的概率

(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說說你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線lyxx軸交于點(diǎn)B1,以OB1為邊長作等邊A1OB1,過點(diǎn)A1A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長作等邊A2A1B2,過點(diǎn)A2A1B2平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長作等邊A3A2B3,,則等邊A2017A2018B2018的邊長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+2x+3x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接BC

1)點(diǎn)G是直線BC上方拋物線上一動(dòng)點(diǎn)(不與B、C重合),過點(diǎn)Gy軸的平行線交直線BC于點(diǎn)E,作GFBC于點(diǎn)F,點(diǎn)M、N是線段BC上兩個(gè)動(dòng)點(diǎn),且MNEF,連接DM、GN.當(dāng)△GEF的周長最大時(shí),求DM+MN+NG的最小值;

2)如圖2,連接BD,點(diǎn)P是線段BD的中點(diǎn),點(diǎn)Q是線段BC上一動(dòng)點(diǎn),連接DQ,將△DPQ沿PQ翻折,且線段DP的中點(diǎn)恰好落在線段BQ上,將△AOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到△AOC′,點(diǎn)T為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)Q、A′、C′、T為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則在,,中正確的判斷是(

A. ①②③④ B. C. ①②③ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂獎(jiǎng).

(1)從獲得美術(shù)獎(jiǎng)和音樂獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;

(2)分別從獲得美術(shù)獎(jiǎng)、音樂獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016湖南省株洲市)某市對(duì)初二綜合素質(zhì)測(cè)評(píng)中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評(píng)價(jià)得分由測(cè)試成績(滿分100分)和平時(shí)成績(滿分100分)兩部分組成,其中測(cè)試成績占80%,平時(shí)成績占20%,并且當(dāng)綜合評(píng)價(jià)得分大于或等于80分時(shí),該生綜合評(píng)價(jià)為A等.

1)孔明同學(xué)的測(cè)試成績和平時(shí)成績兩項(xiàng)得分之和為185分,而綜合評(píng)價(jià)得分為91分,則孔明同學(xué)測(cè)試成績和平時(shí)成績各得多少分?

2)某同學(xué)測(cè)試成績?yōu)?/span>70分,他的綜合評(píng)價(jià)得分有可能達(dá)到A等嗎?為什么?

3)如果一個(gè)同學(xué)綜合評(píng)價(jià)要達(dá)到A等,他的測(cè)試成績至少要多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分在RtABC中,BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn)過點(diǎn)A作AFBC交BE的延長線于點(diǎn)F

1求證:AEFDEB;

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案