分析 (1)在Rt△ABD中,利用正弦的定義可得到AB=3AD=3,再根據(jù)勾股定理計(jì)算出BD=2$\sqrt{2}$,所以BC=BD+CD=2$\sqrt{2}$+1;
(2)先計(jì)算出CE=$\frac{1}{2}$BC=$\sqrt{2}$+$\frac{1}{2}$,則DE=CE-DE=$\sqrt{2}$-$\frac{1}{2}$,然后根據(jù)正切的定義求解.
解答 解:(1)在Rt△ABD中,∵sinB=$\frac{AD}{AB}$=$\frac{1}{3}$,
∴AB=3AD=3,
∴BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\sqrt{{3}^{2}-{1}^{2}}$=2$\sqrt{2}$,
∴BC=BD+CD=2$\sqrt{2}$+1;
(2)∵AE是BC邊上的中線,
∴CE=$\frac{1}{2}$BC=$\frac{1}{2}$(2$\sqrt{2}$+1)=$\sqrt{2}$+$\frac{1}{2}$,
∴DE=CE-DE=$\sqrt{2}$+$\frac{1}{2}$-1=$\sqrt{2}$-$\frac{1}{2}$,
∴tan∠DAE=$\frac{DE}{AD}$=$\frac{\sqrt{2}-\frac{1}{2}}{1}$=$\sqrt{2}$-$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 開口向下 | B. | 對(duì)稱軸是x=-2 | C. | 頂點(diǎn)坐標(biāo)是(-2,2) | D. | 與x軸無交點(diǎn) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com