【題目】如圖,D、E分別是⊙O兩條半徑OA、OB的中點(diǎn), .
(1)求證:CD=CE.
(2)若∠AOB=120°,OA=x,四邊形ODCE的面積為y,求y與x的函數(shù)關(guān)系式.
【答案】(1)證明見(jiàn)解析;(2)y=x2.
【解析】
(1)連接OC,根據(jù)圓心角、弧、弦的關(guān)系定理得到∠COA=∠COB,證明△COD≌△COE,根據(jù)全等三角形的性質(zhì)證明;
(2)連接AC,根據(jù)全等三角形的判定定理得到△AOC為等邊三角形,根據(jù)正切的定義求出CD,根據(jù)三角形的面積公式計(jì)算即可.
(1)證明:連接OC,
∵,
∴∠COA=∠COB,
∵D、E分別是⊙O兩條半徑OA、OB的中點(diǎn),
∴OD=OE,
在△COD和△COE中,
,
∴△COD≌△COE(SAS)
∴CD=CE;
(2)連接AC,
∵∠AOB=120°,
∴∠AOC=60°,又OA=OC,
∴△AOC為等邊三角形,
∵點(diǎn)D是OA的中點(diǎn),
∴CD⊥OA,OD=OA=x,
在Rt△COD中,CD=ODtan∠COD=,
∴四邊形ODCE的面積為y=×OD×CD×2=x2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:∠DAF=∠CDE;
(2)求證:△ADF∽△DEC;
(3)若AE=6,AD=8,AB=7,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,CB,CD分別切⊙O于點(diǎn)B,D,CD交BA的延長(zhǎng)線于點(diǎn)E,CO的延長(zhǎng)線交⊙O于點(diǎn)G,EF⊥OG于點(diǎn)F。
(1)求證:∠FEB=∠ECF
(2)BC= 12, DE=8 求 EA的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線y=ax2-x+c經(jīng)過(guò)原點(diǎn)O與點(diǎn)A(6,0)兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸,交直線y=2x-2于點(diǎn)C,且直線y=2x-2與x軸交于點(diǎn)D.
(1)求拋物線的解析式,并求出點(diǎn)C和點(diǎn)D的坐標(biāo);
(2)求點(diǎn)A關(guān)于直線y=2x-2的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo),并判斷點(diǎn)A′是否在拋物線上,并說(shuō)明理由;
(3)點(diǎn)P(x,y)是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交線段CA′于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為l,求l與x的函數(shù)關(guān)系式及l的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點(diǎn)A(m,3),B(-6,n),與x軸交于點(diǎn)C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo).
(2)請(qǐng)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2.
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示.(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形)
(1)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△A'B'C';
(2)將△A'B'C'繞點(diǎn)C'順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△A″B″C″,并直接寫(xiě)出此過(guò)程中線段C'A'掃過(guò)圖形的面積.(結(jié)果保留π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com