【題目】如圖,的兩直角邊分別在軸的負(fù)半軸和軸的正半軸上,為坐標(biāo)原點(diǎn),,兩點(diǎn)的坐標(biāo)分別為,拋物線經(jīng)過(guò)點(diǎn),且頂點(diǎn)在直線上.

1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

2)若是由沿軸向右平移得到的,當(dāng)四邊形是菱形時(shí),試判斷點(diǎn)和點(diǎn)是否在該拋物線上,并說(shuō)明理由;

3)在(2)的條件下,若點(diǎn)是所在直線下方拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)平行于軸交.設(shè)點(diǎn)的橫坐標(biāo)為,的長(zhǎng)度為.求之間的函數(shù)關(guān)系式,寫(xiě)出自變量的取值范圍,并求取最大值時(shí),點(diǎn)的坐標(biāo).

【答案】1;(2)在,理由見(jiàn)解析;(3s=,時(shí),最大,點(diǎn)的坐標(biāo)為

【解析】

1)已知了拋物線上AB點(diǎn)的坐標(biāo)以及拋物線的對(duì)稱(chēng)軸方程,可用待定系數(shù)法求出拋物線的解析式.(2)首先求出AB的長(zhǎng),將A、B的坐標(biāo)向右平移AB個(gè)單位,即可得出C、D的坐標(biāo),再代入拋物線的解析式中進(jìn)行驗(yàn)證即可.(3)根據(jù)CD的坐標(biāo),易求得直線CD的解析式;那么線段MN的長(zhǎng)實(shí)際是直線BC與拋物線的函數(shù)值的差,可將x=t代入兩個(gè)函數(shù)的解析式中,得出的兩函數(shù)值的差即為l的表達(dá)式,由此可求出lt的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出l取最大值時(shí),點(diǎn)M的坐標(biāo).

1)∵的項(xiàng)點(diǎn)在直線上,

∴可設(shè)所求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式為,

∴點(diǎn)在此拋物線上,

,

∴所求函數(shù)關(guān)系式為:;

2)在中,,

∵四邊形是菱形,

兩點(diǎn)的坐標(biāo)分別是、,

兩點(diǎn)的坐標(biāo)分別是;

當(dāng)時(shí),

當(dāng)時(shí),;

∴點(diǎn)和點(diǎn)在所求拋物線上;

3)設(shè)直線對(duì)應(yīng)的函數(shù)關(guān)系式為,

,

解得:;

軸,點(diǎn)點(diǎn)的橫坐標(biāo)為,

點(diǎn)的橫坐標(biāo)也為;

,

,

∴當(dāng)時(shí),最大,此時(shí)

此時(shí)點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=9,SABC=,動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿射線AB方向以每秒5個(gè)單位的速度運(yùn)動(dòng),動(dòng)點(diǎn)QC點(diǎn)出發(fā),以相同的速度在線段AC上由CA運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正方形PQEFP、QE、F按逆時(shí)針排序),以CQ為邊在AC上方作正方形QCGH

1)求tanA的值;

2)設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,正方形PQEF的面積為S,請(qǐng)?zhí)骄?/span>S是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說(shuō)明理由;

3)當(dāng)t為何值時(shí),正方形PQEF的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在正方形QCGH的邊上,請(qǐng)直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓O的直徑AB5cm,點(diǎn)MAB上且AM1cm,點(diǎn)P是半圓O上的動(dòng)點(diǎn),過(guò)點(diǎn)BBQPMPM(或PM的延長(zhǎng)線)于點(diǎn)Q.設(shè)PMxcm,BQycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0)小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小石的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了xy的幾組值,如下表:

x/cm

1

1.5

2

2.5

3

3.5

4

y/cm

0

3.7

______

3.8

3.3

2.5

______

2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;

3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)BQ與直徑AB所夾的銳角為60°時(shí),PM的長(zhǎng)度約為______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1.在△ABC中,∠ACB=90°,AC=BCDAB上一點(diǎn),連接CD,將CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE,連接AE

1)連接ED,若CD=3AE=4,求AB的長(zhǎng);

2)如圖2,若點(diǎn)FAD的中點(diǎn),連接EB、CF,求證:CFEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:如圖,直線軸、軸分別交于點(diǎn),經(jīng)過(guò)兩點(diǎn)的拋物線軸的另一個(gè)交點(diǎn)為

1)求該拋物線的解析式;

2)若點(diǎn)在直線下方的拋物線上,過(guò)點(diǎn)軸交于點(diǎn)軸交于點(diǎn),求的最大值;

3)設(shè)為直線上的點(diǎn),以、、為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB 為圓O的直徑, PQ切圓OT ACPQC ,交圓O D

1求證: AT 平分BAC ;

2 AD =2TC= ,求圓O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰與等腰,,,垂足為,直線于點(diǎn).繞點(diǎn)順時(shí)針旋轉(zhuǎn),則的長(zhǎng)的最大值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由特殊到一般、類(lèi)比、轉(zhuǎn)化是數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到的思想方法.下面是對(duì)一道幾何題進(jìn)行變式探究的思路,請(qǐng)你運(yùn)用上述思想方法完成探究任務(wù).問(wèn)題情境:在四邊形ABCD中,AC是對(duì)角線,E為邊BC上一點(diǎn),連接AE.以E為旋轉(zhuǎn)中心,將線段AE順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角與∠B相等,得到線段EF,連接CF

1)特例如圖1,若四邊形ABCD是正方形,求證:ACCF;

2)拓展分析一:如圖2,若四邊形ABCD是菱形,探究下列問(wèn)題:

①當(dāng)∠B50°時(shí),求∠ACF的度數(shù);

②針對(duì)圖2的條件,寫(xiě)出一般的結(jié)論(不必證明);

3)拓展探究二:如圖3,若四邊形ABCD是矩形,且BCkABk1).若前提條件不變,特例分析中得到的結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,修改題中的條件使結(jié)論成立(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線過(guò)點(diǎn),與軸相交于點(diǎn).

1)求拋物線的解析式;

2)在軸正半軸上存在點(diǎn),使得是等腰三角形,請(qǐng)求出點(diǎn)的坐標(biāo);

3)如圖2,點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)于點(diǎn),是否存在點(diǎn),使得中的某個(gè)角恰好等于2倍?若存在,請(qǐng)求出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案