【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學過的特殊四邊形中,寫出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
【答案】(1)(2)證明見解析
【解析】
試題分析:(1)根據(jù)定義和特殊四邊形的性質(zhì),則有矩形或正方形或直角梯形;
(2)①首先證明△ABC≌△DBE,得出AC=DE,BC=BE,連接CE,進一步得出△BCE為等邊三角形;
②利用等邊三角形的性質(zhì),進一步得出△DCE是直角三角形,問題得解.
解:(1)正方形、矩形、直角梯形均可;
證明:(2)①∵△ABC≌△DBE,
∴BC=BE,
∵∠CBE=60°,
∴△BCE是等邊三角形;
②∵△ABC≌△DBE,
∴BE=BC,AC=ED;
∴△BCE為等邊三角形,
∴BC=CE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
在Rt△DCE中,
DC2+CE2=DE2,
∴DC2+BC2=AC2.
科目:初中數(shù)學 來源: 題型:
【題目】若m=2125,n=375,則m、n的大小關(guān)系正確的是( )
A. m>n B. m<n C. m=n D. 大小關(guān)系無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列分解因式正確的是( 。
A. ﹣ma﹣m=﹣m(a﹣1) B. a2﹣1=(a﹣1)2
C. a2﹣6a+9=(a﹣3)2 D. a2+2a+4=(a+2)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系(如圖)中,拋物線經(jīng)過點、點,點與點關(guān)于這條拋物線的對稱軸對稱;
(1)求配方法求這條拋物線的頂點坐標;
(2)聯(lián)結(jié)、,求的正弦值;
(3)點是這條拋物線上的一個動點,設(shè)點的橫坐標為(),過點作軸的垂線,垂足為,如果,求的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=5米,AC=12米.M點在線段CA上,從C向A運動,速度為1米/秒;同時N點在線段AB上,從A向B運動,速度為2米/秒.運動時間為t秒.
(1)當t為何值時,∠AMN=∠ANM?
(2)當t為何值時,△AMN的面積最大?并求出這個最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com