【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A的坐標(biāo)為(﹣1,0),與y軸交于點(diǎn)C(0,3),作直線BC.動(dòng)點(diǎn)P在x軸上運(yùn)動(dòng),過點(diǎn)P作PM⊥x軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式和直線BC的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),若△CMN是以MN為腰的等腰直角三角形時(shí),求m的值;
(3)當(dāng)以C、O、M、N為頂點(diǎn)的四邊形是以OC為一邊的平行四邊形時(shí),求m的值.
【答案】(1) y=﹣x+3;(2)m=2;(3)
【解析】試題分析:
(1)把點(diǎn)A(﹣1,0),點(diǎn)C(0,3)代入拋物線y=﹣x2+bx+c列出方程組求得b、c的值即可得到拋物線的解析式,在所得拋物線的解析式中,由y=0可得關(guān)于x的一元二次方程,解方程可求得B的坐標(biāo);有B、C的坐標(biāo)用“待定系數(shù)法”可求得直線BC的解析式;
(2)由△CMN是以MN為腰的等腰直角三角形可得,CM∥x軸,由點(diǎn)C的坐標(biāo)(0,3)可得點(diǎn)M的縱坐標(biāo)為3,把y=3代入拋物線的解析式解得x的值即可得到m的值;
(3)由已知把M、N的坐標(biāo)用含“m”的代數(shù)式表達(dá)出來,進(jìn)一步表達(dá)出MN的長(zhǎng),根據(jù)題意可得MN=OC=3即可列出關(guān)于“m”的方程,解方程即可求得m的值.
試題解析:
(1)把點(diǎn)A(﹣1,0),點(diǎn)C(0,3)代入拋物線y=﹣x2+bx+c,得,解得 ,∴拋物線的解析式為y=﹣x2+2x+3;
令﹣x2+2x+3=0,解得x1=﹣1,x2=3,
∴點(diǎn)B的坐標(biāo)(3,0),
設(shè)直線BC的解析式為y=kx+b,把C(0,3),B的坐標(biāo)(3,0)代入,得,解得: ,∴直線BC的解析式為y=﹣x+3.
(2)∵△CMN是以MN為腰的等腰直角三角形,
∴CM∥x軸,即點(diǎn)M的縱坐標(biāo)為3,
把y=3代入y=﹣x2+2x+3,得x=0或2,
∵點(diǎn)M不能與點(diǎn)C重合,
∴點(diǎn)P的橫坐標(biāo)為m=2.
(3)∵拋物線的解析式為y=﹣x2+2x+3,P的橫坐標(biāo)為m
∴M(m,﹣m2+2m+3),
∵直線BC的解析式為y=﹣x+3.
∴N(m,﹣m+3),
∵以C、O、M、N為頂點(diǎn)的四邊形是以OC為一邊的平行四邊形,
∴MN=OC=3,
∴﹣m2+2m+3﹣(﹣m+3)=3,化簡(jiǎn)得m2﹣3m+3=0,無解,
或(﹣m+3)﹣(﹣m2+2m+3)=3,化簡(jiǎn)得m2﹣3m﹣3=0,
解得m=,
∴當(dāng)以C、O、M、N為頂點(diǎn)的四邊形是以OC為一邊的平行四邊形時(shí),m的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天小明騎自行車上學(xué),途中因自行車發(fā)生故障,修車耽誤了一段時(shí)間后繼續(xù)騎行,按時(shí)趕到了學(xué)校,如圖所示是小明從家到學(xué)校這一過程中所走的路程 s(米)與時(shí)間 t(分)之間的關(guān)系.
(1)小明從家到學(xué)校的路程共 米,從家出發(fā)到學(xué)校,小明共用了 分鐘;
(2)小明修車用了多長(zhǎng)時(shí)間?
(3)小明修車以前和修車后的平均速度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點(diǎn)會(huì)合.已知小亮行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長(zhǎng)的2倍,小穎在小亮出發(fā)后50分才乘上纜車,纜車的平均速度為180米/分,設(shè)小亮出發(fā)x分后行走的路程為y米.圖中的折線表示小亮在整個(gè)行走過程中y隨x的變化關(guān)系.
(1)小亮行走的總路程是_________米,他途中休息了___________分;
(2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;
(3)當(dāng)小穎到達(dá)纜車終點(diǎn)時(shí),小亮離纜車終點(diǎn)的路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC邊上一點(diǎn),且AB=AE.
(1)求證:△ABC≌△EAD;
(2)若∠B=65°,∠EAC=25°,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
為了配合足球進(jìn)校園的活動(dòng),實(shí)驗(yàn)學(xué)校在體育用品專賣店購買甲、乙兩種不同的足球,購買甲種足球共花費(fèi)2000元,購買乙種足球共花費(fèi)1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍,且購買一個(gè)乙種足球比購買一個(gè)甲種足球多花20元。求購買一個(gè)甲種足球,一個(gè)乙種足球各需多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.
(1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1;
(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),我們稱此三角形為“夢(mèng)想三角形”.如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,那么這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會(huì)干部對(duì)校學(xué)生會(huì)倡導(dǎo)的“助殘”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù),對(duì)學(xué)校部分捐款人數(shù)進(jìn)行調(diào)查和分組統(tǒng)計(jì)后,將數(shù)據(jù)整理成如圖的統(tǒng)計(jì)圖(圖中信息不完整).已知A,B兩組捐款人數(shù)的比為1∶5.
捐款人數(shù)分組統(tǒng)計(jì)表
組別 | 捐款額x/元 | 人數(shù) |
A | 1≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | |
D | 30≤x<40 | |
E | x≥40 |
請(qǐng)結(jié)合以上信息解答下列問題:
(1)a=____,本次調(diào)查的樣本容量是______;
(2)先求出C組的人數(shù),再補(bǔ)全“捐款人數(shù)分組統(tǒng)計(jì)圖①;
(3)若該學(xué)校自愿捐款的學(xué)生有1500人,請(qǐng)估計(jì)捐款不少于30元的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com