【題目】當三角形中一個內(nèi)角是另一個內(nèi)角的3倍時,我們稱此三角形為“夢想三角形”.如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為_____

【答案】18°或36°

【解析】試題分析:根據(jù)三角形內(nèi)角和等于180°,如果一個夢想三角形有一個角為108°,可得另兩個角的和為72°,由三角形中一個內(nèi)角是另一個內(nèi)角的3倍時,可以分別求得最小角為180°-108°-108÷3°=36°,72°÷1+3=18°,由此比較得出答案即可.

本題解析:當 的角是另一個內(nèi)角的3倍時,最小角為

的角是另一個內(nèi)角的3倍時,最小角為因此,這個夢想三角形的最小內(nèi)角的度數(shù)為 .

故答案為:18°36°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中,去括號正確的是( )

A. m+(-n+x-y)=m+n+x-y B. m-(-n+x-y)=m+n+x+y

C. a-2(b+c)=a-2b+c D. a-2(b-c)=a-2b+2c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(1)

(2)

(3)

(4) (用乘法公式計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正多邊形的一個外角等于40°,則這個多邊形的邊數(shù)是( )

A. 6 B. 9 C. 12 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:BE=DF,②∠DAF=15°,AC垂直平分EF,BE+DF=EF,SCEF=2SABE.其中正確結(jié)論有(  )個

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,點D在邊BC所在的直線上,過點D作DFAC交直線AB于點F,DEAB交直線AC于點E.

(1)當點D在邊BC上時,如圖①,求證:DE+DF=AC.

(2)當點D在邊BC的延長線上時,如圖②;當點D在邊BC的反向延長線上時,如圖③,請分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關(guān)系,不需要證明.

(3)若AC=6,DE=4,則DF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在斜邊長為1的等腰直角三角形OAB中,作內(nèi)接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作內(nèi)接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作內(nèi)接正方形A3B3C3D3;…;依次作下去,則第n個正方形AnBnCnDn的邊長是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x=﹣1是方程x2﹣ax+6=0的一個根,則它的另一個根為

查看答案和解析>>

同步練習冊答案