【題目】計(jì)算
(1)(- 5)+ 6
(2)(+21)+(-31)
(3)(- 5.2 ) + ( - 1.2 )
(4)(﹣3)+7+(﹣6)+(﹣7)
(5)(- 20 ) +(-14)+(-28)+16
(6)5.6+(﹣0.9)+4.4+(﹣8.1)
(7)30 + 15+(-7)+(-15)
(8).
【答案】(1)1;(2)-10;(3)-6.4;(4)-9;(5)-46;(6)1;(7)23;(8)
【解析】
(1)原式利用異號(hào)兩數(shù)相加的法則計(jì)算即可得到結(jié)果;
(2)原式利用同號(hào)兩數(shù)相加的法則計(jì)算即可得到結(jié)果;
(3)原式利用結(jié)合后,計(jì)算即可得到結(jié)果;
(4)原式去括號(hào)后,再結(jié)合,相加減即可;
(5)原式去括號(hào)后,再結(jié)合,相加減即可;
(6)原式去括號(hào)后,再結(jié)合,相加減即可;
(7)原式去括號(hào)后,再結(jié)合,相加減即可;
(8)原式去括號(hào)后,再結(jié)合,相加減即可.
(1)( - 5 )+ 6=- 5+6=1;
(2)(+21)+(-31)=21-31= -10;
(3)(- 5.2 ) + ( - 1.2 ) =- 5.2 - 1.2 =-6.4;
(4)(﹣3)+7+(﹣6)+(﹣7)=﹣3+7﹣6﹣7=-9;
(5)=-20-14-28+16=-46;
(6)5.6+(﹣0.9)+4.4+(﹣8.1)=10-9=1;
(7)30 + 15+(-7)+(-15)=30+15-7-15=23;
(8)= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC=120°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖①中的三角板OMN擺放成如圖②所示的位置,使一邊OM在∠BOC的內(nèi)部,當(dāng)OM平分∠BOC時(shí),∠BON= ;(直接寫出結(jié)果)
(2)在(1)的條件下,作線段NO的延長(zhǎng)線OP(如圖③所示),試說(shuō)明射線OP是∠AOC的平分線;
(3)將圖①中的三角板OMN擺放成如圖④所示的位置,請(qǐng)?zhí)骄俊?/span>NOC與∠AOM之間的數(shù)量關(guān)系.(直接寫出結(jié)果,不須說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長(zhǎng)AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長(zhǎng)為( )
A.100米 B.99米 C.98米 D.74米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0)、B(0,3)、C(1,0)三點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)D的坐標(biāo);
(2)如圖1,將拋物線的對(duì)稱軸繞拋物線的頂點(diǎn)D順時(shí)針旋轉(zhuǎn)60°,與直線y=﹣x交于點(diǎn)N.在直線DN上是否存在點(diǎn)M,使∠MON=75°.若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)P、Q分別是拋物線y=ax2+bx+c和直線y=﹣x上的點(diǎn),當(dāng)四邊形OBPQ是直角梯形時(shí),求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.
(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年上半年某市各級(jí)各類中小學(xué)(含中等職業(yè)學(xué)校)開展了“萬(wàn)師訪萬(wàn)家”活動(dòng).某縣家訪方式有:A.上門走訪;B.電話訪問(wèn);C.網(wǎng)絡(luò)訪問(wèn)(班級(jí)微信或QQ群);D.其他.該縣教育局負(fù)責(zé)人從“萬(wàn)師訪萬(wàn)家”平臺(tái)上隨機(jī)抽取本縣一部分老師的家訪情況,繪制了如圖所示兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查的樣本是________________________________,樣本容量為________,
扇形統(tǒng)計(jì)圖中,“A”所對(duì)應(yīng)的圓心角的度數(shù)為多少?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)已知該縣共有3500位老師參與了這次“萬(wàn)師訪萬(wàn)家”活動(dòng),請(qǐng)估計(jì)該縣共有多少位老師采用的是上門走訪的方式進(jìn)行家訪的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線的交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過(guò)程中可形成什么圖形?
(4)如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說(shuō)理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△A1B1C1是邊長(zhǎng)為1的等邊三角形,A2為等邊△A1B1C1的中心,連接A2B1并延長(zhǎng)到點(diǎn)B2 , 使A2B1=B1B2 , 以A2B2為邊作等邊△A2B2C2 , A3為等邊
△A2B2C2的中心,連接A3B2并延長(zhǎng)到點(diǎn)B3 , 使A3B2=B2B3 , 以A3B3為邊作等邊△A3B3C3 , 依次作下去得到等邊△AnBnCn , 則等邊△A5B5C5的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內(nèi)一點(diǎn),且PA=3,PB=1,PC= CD=2,CD⊥CP,求∠BPC的度數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com