【題目】如圖,分別以的斜邊,直角邊為邊向外作等邊,的中點,相交于點.若∠BAC=30°,下列結(jié)論:①;②四邊形為平行四邊形;③;④.其中正確結(jié)論的序號是______.

【答案】①②③④

【解析】

首先證明證明RtADFRtBAC,結(jié)合已知得到AE=DF,然后根據(jù)內(nèi)錯角相等兩直線平行得到DFAE,由一組對邊平行且相等可得四邊形ADFE是平行四邊形,故②正確;由∠DAC=DAB+BAC=90°,可得∠AHE=90°,故①正確;由2AG=AF可知③正確;在RtDBFRtEFA中,BDFE,DFEA,可證RtDBFRtEFA,故④正確.

∵△ABDACE都是等邊三角形,
AD=BD=AB,AE=CE=AC,∠ADB=BAD=DBA=CAE=AEC=ACE=60°
FAB的中點,

∴∠BDF=ADF=30°,∠DFA=DFB=90°,BF=AF=AB
∵∠BAC=30°,∠ACB=90°,AD=2AF
BC=AB,∠ADF=BAC,
AF=BF=BC
RtADFRtBAC
ADBA AFBC,
RtADFRtBACHL),
DF=AC,
AE=DF
∵∠BAC=30°
∴∠BAC+CAE=BAE=90°,
∴∠DFA=EAB
DFAE,
∴四邊形ADFE是平行四邊形,故②正確;

AD=EFADEF,

設(shè)ACEF于點H,
∴∠DAC=AHE
∵∠DAC=DAB+BAC=90°,
∴∠AHE=90°,
EFAC.①正確;
∵四邊形ADFE是平行四邊形,
2GF=2GA=AF
AD=4AG.故③正確.
RtDBFRtEFA
BDFE,DFEA,
RtDBFRtEFAHL).故④正確,
故答案為:①②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)了一批兩種型號的智能掃地機器人,這兩種智能掃地機器人的進(jìn)購數(shù)量、進(jìn)價、售價如表所示:

類型

進(jìn)購數(shù)量(個)

進(jìn)價(元/個)

售價(元/個)

20

1800

2300

40

1500

若該商場計劃全部銷售完這批智能掃地機器人的總利潤不少于32000元,則型智能掃地機器人的銷售單價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,AD是△ABC的中線.△ABD與△ACD的面積有怎樣的數(shù)量關(guān)系?為什么?

(2)若三角形的面積記為S,例如:△ABC的面積記為SABC.如圖②,已知SABC1.△ABC的中線AD、CE相交于點O,求四邊形BDOE的面積.

小華利用(1)的結(jié)論,解決了上述問題,解法如下:

連接BO,設(shè)SBEOx,SBDOy,由(1)結(jié)論可得:SBCESBADSABC,SBCO2SBDO2ySBAO2SBEO2x.則有所以xy.即四邊形BDOE面積為

請仿照上面的方法,解決下列問題:

①如圖③,已知SABC1D、EBC邊上的三等分點,FGAB邊上的三等分點,AD、CF交于點O,求四邊形BDOF的面積.

②如圖④,已知SABC1D、E、FBC邊上的四等分點,GH、IAB邊上的四等分點,AD、CG交于點O,則四邊形BDOG的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初中對 600 名畢業(yè)生中考體育測試坐位體前屈成績進(jìn)行整理,繪制成 如下不完整的統(tǒng)計圖:

根據(jù)統(tǒng)計圖,回答下列問題。

(1)請將條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中,b= ,得 8 分所對應(yīng)扇形的圓心角度數(shù)為 ;

(3)在本次調(diào)查的學(xué)生中,隨機抽取 1 名男生,他的成績不低于 9 分的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)材料,解答問題

如圖,數(shù)軸上有點,對應(yīng)的數(shù)分別是6-4,4-1,則兩點間的距離為兩點間的距離為;兩點間的距離為;由此,若數(shù)軸上任意兩點分別表示的數(shù)是,則兩點間的距離可表示為反之,表示有理數(shù)在數(shù)軸上的對應(yīng)點之間的距離,稱之為絕對值的幾何意義

問題應(yīng)用1

1)如果表示-1的點和表示的點之間的距離是2,則點對應(yīng)的的值為___________;

2)方程的解____________;

3)方程的解______________ ;

問題應(yīng)用2

如圖,若數(shù)軸上表示的點為.

4的幾何意義是數(shù)軸上_____________,當(dāng)__________,的值最小是____________;

5的幾何意義是數(shù)軸上_______,的最小值是__________,此時點在數(shù)軸上應(yīng)位于__________上;

6)根據(jù)以上推理方法可求的最小值是___________,此時__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有個點A(1,0),點A1次向上跳動1個單位至點A1(1,1),緊接著第2次向右跳動2個單位至點A2(1,1),第3次向上跳動1個單位至點A3,第4次向左跳動3個單位至點A4,第5次又向上跳動1個單位至點A5,第6次向右跳動4個單位至點A6,……,依此規(guī)律跳動下去,點A2019次跳動至點A2019的坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC,∠C=90°,AB=10,且cosA=. M為線段AB的中點, 作DM⊥AB交AC于D. 點Q在線段AC上,點P在線段BC上,以PQ為直徑的圓始終過點M, 且PQ交線段DM于點E.

⑴ 試說明△AMQ∽△PME;

⑵ 當(dāng)△PME是等腰三角形時,求出線段AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的圖象的對稱軸、頂點坐標(biāo)及與x軸的交點坐標(biāo).

(1)y=4x2+24x+35;

(2)y=-3x2+6x+2;

(3)y=x2-x+3;

(4)y=2x2+12x+18.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與軸、軸交于兩點,軸正半軸上的一個動點,連接,將沿翻折,點恰好落在上,則點的坐標(biāo)為______.

查看答案和解析>>

同步練習(xí)冊答案