【題目】(1)如圖①,AD是△ABC的中線.△ABD與△ACD的面積有怎樣的數(shù)量關(guān)系?為什么?

(2)若三角形的面積記為S,例如:△ABC的面積記為SABC.如圖②,已知SABC1.△ABC的中線ADCE相交于點(diǎn)O,求四邊形BDOE的面積.

小華利用(1)的結(jié)論,解決了上述問(wèn)題,解法如下:

連接BO,設(shè)SBEOx,SBDOy,由(1)結(jié)論可得:SBCESBADSABCSBCO2SBDO2ySBAO2SBEO2x.則有所以xy.即四邊形BDOE面積為

請(qǐng)仿照上面的方法,解決下列問(wèn)題:

①如圖③,已知SABC1D、EBC邊上的三等分點(diǎn),F、GAB邊上的三等分點(diǎn),AD、CF交于點(diǎn)O,求四邊形BDOF的面積.

②如圖④,已知SABC1DE、FBC邊上的四等分點(diǎn),G、H、IAB邊上的四等分點(diǎn),AD、CG交于點(diǎn)O,則四邊形BDOG的面積為

【答案】1SABD=SACD;(2)①,②

【解析】

1)利用等底等高的三角形面積相等求解即可;
2)①連接BO,設(shè)SBDO=x,SBGO=y,根據(jù)三角形間的面積關(guān)系列出方程組求解即可;
②連接BO,設(shè)SBDO=x,SBGO=y,根據(jù)三角形間的面積關(guān)系列出方程組求解即可.

解:(1SABD=SACD
AD是△ABC的中線,
BD=CD,
又∵△ABD與△ACD高相等,
SABD=SACD

2)①如圖3,連接BO,設(shè)SBFO=x,SBDO=y,

SBCF=SABD=SABC=
SBCO=3SBDO=3y,
SBAO=3SBFO=3x

則有: ,即

所以x+y=,即四邊形BDOF的面積為;

②如圖,連接BO,設(shè)SBDO=x,SBGO=y,

SBCG=SABD=SABC=,
SBCO=4SBDO=4x
SBAO=4SBGO=4y

則有: ,即

所以x+y= ,即四邊形BDOG的面積為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為6E、F、P分別是AB、CDAD上的點(diǎn)(均不與正方形頂點(diǎn)重合)且PE=PF,PEPF.

1)求證:AE+DF=6

2)設(shè)AE=,五邊形EBCFP的面積為,求的函數(shù)關(guān)系式,并求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列代數(shù)式或方程解應(yīng)用題:

已知小明的年齡是歲,小紅的年齡比小明的年齡的倍小歲,小華的年齡比小紅的年齡大歲,求這三名同學(xué)的年齡的和.

小亮與小明從學(xué)校同時(shí)出發(fā)去看在首都體育館舉行的一場(chǎng)足球賽, 小亮每分鐘走,他走到足球場(chǎng)等了分鐘比賽才開(kāi)始:小明每分鐘走,他走到足球場(chǎng),比賽已經(jīng)開(kāi)始了分鐘.問(wèn)學(xué)校與足球場(chǎng)之間的距離有多遠(yuǎn)?

請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:

①一個(gè)水瓶與一個(gè)水杯分別是多少元?

②甲、乙兩家商場(chǎng)都銷售該水瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定:這兩種商品都打八折;乙商場(chǎng)規(guī)定:買一個(gè)水瓶贈(zèng)送兩個(gè)水杯,單獨(dú)購(gòu)買的水杯仍按原價(jià)銷售.若某單位想在一家商場(chǎng)買個(gè)水瓶和個(gè)水杯,請(qǐng)問(wèn)選擇哪家商場(chǎng)更合算?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)由若干小正方形堆成的幾何體,它從正面看和從左面看的圖形如圖1所示.

這個(gè)幾何體可以是圖2中甲,乙,丙中的______;

這個(gè)幾何體最多由______個(gè)小正方體堆成,最少由______個(gè)小正方體堆成;

請(qǐng)?jiān)趫D3中用陰影部分畫出符合最少情況時(shí)的一個(gè)從上面往下看得到的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)?jiān)谙旅胬ㄌ?hào)里補(bǔ)充完整證明過(guò)程:

已知:如圖,△ABC中,∠ACB90°,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,且∠CEF=∠CFE.求證:CDAB.

證明:∵AF平分∠CAB (已知)

1=∠2

∵∠CEF=∠CFE , 又∠3=CEF (對(duì)頂角相等)

∴∠CFE=3(等量代換)

∵在△ACF中,∠ACF90°(已知)

∴( +CFE90°

∵∠1=∠2, CFE=3(已證) ∴( + )=90°(等量代換)

在△AED, ADE90°( 三角形內(nèi)角和定理)

CDAB .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=100°,∠BCD=70°,點(diǎn)M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MFAD,FNDC,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究數(shù)軸上任意兩點(diǎn)之間的距離與這兩點(diǎn)對(duì)應(yīng)的數(shù)的關(guān)系.

(1)如果點(diǎn)A表示數(shù)5,將點(diǎn)A先向左移動(dòng)4個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,那么點(diǎn)B表示的數(shù)是  ,A、B兩點(diǎn)間的距離是  

如果點(diǎn)A表示數(shù)﹣2,將點(diǎn)A向右移動(dòng)5個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,那么點(diǎn)B表示的數(shù)是  ,A、B兩點(diǎn)間的距離是 

(2)發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)M對(duì)應(yīng)的數(shù)是m,點(diǎn)N對(duì)應(yīng)的數(shù)是n,那么點(diǎn)M與點(diǎn)N之間的距離可表示為  (用m、n表示且m≥n).

(3)應(yīng)用利用你發(fā)現(xiàn)的結(jié)論解決下列問(wèn)題:數(shù)軸上表示x和﹣2的兩點(diǎn)P與Q之間的距離是3,則x=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以的斜邊,直角邊為邊向外作等邊,的中點(diǎn),,相交于點(diǎn).若∠BAC=30°,下列結(jié)論:①;②四邊形為平行四邊形;③;④.其中正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽(tīng)課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了你對(duì)哪類在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)圖中信息,解答下列問(wèn)題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中在線討論對(duì)應(yīng)的扇形圓心角的度數(shù);

3)該校共有學(xué)生人,請(qǐng)你估計(jì)該校對(duì)在線閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案