【題目】如圖,一次函數(shù)的圖像與軸、軸交于兩點,軸正半軸上的一個動點,連接,將沿翻折,點恰好落在上,則點的坐標(biāo)為______.

【答案】,0)或(24,0

【解析】

分兩種情況討論:當(dāng)點POA上時,由OC關(guān)于PB對稱,可得OPCP,BCOB8;當(dāng)點PAO延長線上時,由OC關(guān)于PB對稱,可得OPCPBCOB8,分別依據(jù)勾股定理得到方程,解方程即可得到點P的坐標(biāo).

解:設(shè)點O關(guān)于直線PB的對稱點是C

∵一次函數(shù)的圖象與x軸、y軸交于A、B兩點,

AO6,BO8,AB10

分兩種情況:

①當(dāng)點POA上時,

由折疊的性質(zhì),可得OPCPBCOB8,∠BCP=∠BOP90°

設(shè)OPCPx,則AP6x,AC1082

RtACP中,由勾股定理可得:x222=(6x2,

解得x,

P,0);

②當(dāng)點PAO延長線上時,

由折疊的性質(zhì),可得OPCPBCOB8,∠C=∠BOP90°

設(shè)OPCPx,則AP6x,AC10818

RtACP中,由勾股定理可得:x2182=(6x2

解得x24,

P240).

故答案為:(0)或(24,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以的斜邊,直角邊為邊向外作等邊,的中點,,相交于點.若∠BAC=30°,下列結(jié)論:①;②四邊形為平行四邊形;③;④.其中正確結(jié)論的序號是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機對本校部分學(xué)生進(jìn)行了你對哪類在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息,解答下列問題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應(yīng)的扇形圓心角的度數(shù);

3)該校共有學(xué)生人,請你估計該校對在線閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1;

2;

32x3y-2xy+-2x2y2;

4)(2a+b)(b-2a-a-3b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲開始跑步,中途改為步行,到達(dá)圖書館恰好用時.小東騎自行車以的速度直接回家,兩人離家的路程與各自離開出發(fā)地的時間之間的函數(shù)圖象如圖所示,下列說法正確的有幾個.(

①家與圖書館之間的路程為;

②小玲步行的速度為

③兩人出發(fā)以后8分鐘相遇;

④兩人出發(fā)以后、時相距.

A.1B.2

C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線ABDC,點P為平面上一點,連接APCP.

(1)如圖1,點P在直線AB、CD之間,當(dāng)∠BAP=60°,DCP=20°時,求∠APC.

(2)如圖2,點P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.

(3)如圖3,點P落在CD外,∠BAP與∠DCP的角平分線相交于點K,AKC與∠APC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為銳角ABC的外接圓半徑為5.

(1)用尺規(guī)作圖作出∠BAC的平分線,并標(biāo)出它與劣弧BC的交點E(保留作圖痕跡不寫作法);

(2)若(1)中的點E到弦BC的距離為3,求弦CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,C=90°,O,D分別為AB,BC上的點,經(jīng)過A,D兩點的⊙O分別交AB,AC于點E,F(xiàn),D為弧EF的中點.

(1)求證:BC與⊙O相切;

(2)當(dāng)⊙O的半徑r=2,CAD=30°,求劣弧AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PA是⊙O的切線,點C在⊙O上,CBPO

1)判斷PC與⊙O的位置關(guān)系,并說明理由;

2)若AB=6,CB=4,求PC的長.

查看答案和解析>>

同步練習(xí)冊答案