【題目】如圖,已知拋物線與直線y=2x+3交于點(diǎn)M(0,3), A(a,15).點(diǎn)B是拋物線上M,A之間的一個(gè)動(dòng)點(diǎn),過點(diǎn)B分別作x軸、y軸的平行線與直線MA交于點(diǎn)C,E.以BC,BE為邊構(gòu)造矩形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),請(qǐng)寫出m,n之間的關(guān)系式________________ .
【答案】
【解析】試題解析:∵點(diǎn)A(a,15)在直線y=2x+3上,
∴12=2a,
解得:a=6,
又∵點(diǎn)A、M是拋物線y=x2+bx+c上的點(diǎn),
將點(diǎn)A(6,15)、M(0,3)代入y=x2+bx+c,可得
,解得:
∴拋物線解析式為y=x2-x+3.
∵直線MA的解析式為:y=2x+3,點(diǎn)D的坐標(biāo)為(m,n),
∴點(diǎn)E的坐標(biāo)為(,n),點(diǎn)C的坐標(biāo)為(m,2m+3),
∴點(diǎn)B的坐標(biāo)為(,2m+3),
把點(diǎn)B(,2m+3)代入y=x2-x+3,可得m=
∴m、n之間的關(guān)系式為m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寧波某企業(yè)新增了一個(gè)化工項(xiàng)目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購買A、B兩種型號(hào)的污水處理設(shè)備共10臺(tái),具體情況如下表:
經(jīng)預(yù)算,企業(yè)最多支出136萬元購買設(shè)備,且要求月處理污水能力不低于2150噸.
(1)該企業(yè)有哪幾種購買方案?
(2)哪種方案更省錢?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(5,﹣2)與點(diǎn)B(x,y)在同一條平行于x軸的直線上,且B到y軸的距離等于4,那么點(diǎn)B是坐標(biāo)是( 。
A. (4,﹣2)或(﹣4,﹣2)B. (4,2)或(﹣4,2)
C. (4,﹣2)或(﹣5,﹣2)D. (4,﹣2)或(﹣1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解上一次八年級(jí)數(shù)學(xué)測驗(yàn)成績情況,隨機(jī)抽取了40名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,這40名學(xué)生的成績數(shù)據(jù)如下:
55 62 67 53 58 83 87 64 68 85
60 94 81 98 51 83 78 77 66 71
91 72 63 75 88 73 52 71 79 63
74 67 78 61 97 76 72 77 79 71
(1)將樣本數(shù)據(jù)適當(dāng)分組,制作頻數(shù)分布表:
分 組 |
|
|
|
|
|
頻 數(shù) |
|
|
|
|
|
(2)根據(jù)頻數(shù)分布表,繪制頻數(shù)直方圖:
(3)從圖可以看出,這40名學(xué)生的成績都分布在什么范圍內(nèi)?分?jǐn)?shù)在哪個(gè)范圍的人數(shù)最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘客輪同時(shí)離開港口,航行的速度都是40m/min,甲客輪用15min到達(dá)點(diǎn)A,乙客輪用20min到達(dá)點(diǎn)B,若A,B兩點(diǎn)的直線距離為1000m,甲客輪沿著北偏東30°的方向航行,則乙客輪的航行方向可能是( 。
A. 北偏西30° B. 南偏西30° C. 南偏東60° D. 南偏西60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,P為AB邊上任意一點(diǎn),AE⊥DP于E,點(diǎn)F在DP的延長線上,且EF=DE,連接AF、BF,∠BAF的平分線交DF于G,連接GC.
(1)求證:△AEG是等腰直角三角形;
(2)求證:AG+CG=DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,點(diǎn)E為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長交AB于點(diǎn)F,連結(jié)BE.
(1)如果①,求證:∠AFD=∠EBC;
(2)如圖②,若DE=EC且BE⊥AF,求∠DAB的度數(shù);
(3)若∠DAB=90°且當(dāng)△BEF為等腰三角形時(shí),求∠EFB的度數(shù)(只寫出條件與對(duì)應(yīng)的結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)圖象過點(diǎn)(﹣1,0),頂點(diǎn)為(1,2),則結(jié)論:
①abc>0;②x=1時(shí),函數(shù)最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com