【題目】如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.
【答案】
【解析】
根據(jù)菱形和平移的性質(zhì)得出四邊形A′B′CD是平行四邊形,進(jìn)而得出A′D=B′C,根據(jù)最短路徑問題的步驟求解即可得出答案.
解:∵在邊長為1的菱形ABCD中,∠ABC=60°,
∴AB=CD=1,∠ABD=30°,
∵將△ABD沿射線BD的方向平移得到△A'B'D',
∴A′B′=AB=1,A′B′∥AB,
∵四邊形ABCD是菱形,
∴AB=CD,AB∥CD,
∴∠BAD=120°,
∴A′B′=CD,A′B′∥CD,
∴四邊形A′B′CD是平行四邊形,
∴A′D=B′C,
∴A'C+B'C的最小值=A′C+A′D的最小值,
∵點(diǎn)A′在過點(diǎn)A且平行于BD的定直線上,
∴作點(diǎn)D關(guān)于定直線的對稱點(diǎn)E,連接CE交定直線于A′,
則CE的長度即為A'C+B'C的最小值,
∵∠A′AD=∠ADB=30°,AD=1,
∴∠ADE=60°,DH=EH=AD=,
∴DE=1,
∴DE=CD,
∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,
∴∠E=∠DCE=30°,
∴CE=CD=.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費(fèi)用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,以點(diǎn)為圓心,以為半徑作優(yōu)弧,交于點(diǎn),交于點(diǎn).點(diǎn)在優(yōu)弧上從點(diǎn)開始移動,到達(dá)點(diǎn)時停止,連接.
(1)當(dāng)時,判斷與優(yōu)弧的位置關(guān)系,并加以證明;
(2)當(dāng)時,求點(diǎn)在優(yōu)弧上移動的路線長及線段的長.
(3)連接,設(shè)的面積為,直接寫出的取值范圍.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線:與軸交于兩點(diǎn)(在的左側(cè)),與軸交于點(diǎn).
(1)求拋物線的解析式及兩點(diǎn)的坐標(biāo);
(2)求拋物線的頂點(diǎn)坐標(biāo);
(3)將拋物線向上平移3個單位長度,再向右平移個單位長度,得到拋物線.①若拋物線的頂點(diǎn)在內(nèi),求的取值范圍;②若拋物線與線段只有一個交點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=5cm,點(diǎn)M在AB上且AM=1cm,點(diǎn)P是半圓O上的動點(diǎn),過點(diǎn)B作BQ⊥PM交PM(或PM的延長線)于點(diǎn)Q.設(shè)PM=xcm,BQ=ycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時,y的值為0)小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小石的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm | 0 | 3.7 | ______ | 3.8 | 3.3 | 2.5 | ______ |
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BQ與直徑AB所夾的銳角為60°時,PM的長度約為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AD經(jīng)過⊙O上的點(diǎn)A,△ABC為⊙O的內(nèi)接三角形,并且∠CAD=∠B.
(1)判斷直線AD與⊙O的位置關(guān)系,并說明理由;
(2)若∠CAD=30°,⊙O的半徑為1,求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩所學(xué)校的學(xué)生都參加了某次體育測試,成績均為7﹣10分,且為整數(shù).亮亮分別從這兩所學(xué)校各隨機(jī)抽取一部分學(xué)生的測試成績,共200份,并繪制了如下尚不完整的統(tǒng)計圖.
(1)這200份測試成績的中位數(shù)是 分,m= ;
(2)補(bǔ)全條形統(tǒng)計圖;扇形統(tǒng)計圖中,求成績?yōu)?/span>10分所在扇形的圓心角的度數(shù).
(3)亮亮算出了“1名A校學(xué)生的成績被抽到”的概率是,請你估計A校成績?yōu)?/span>8分的學(xué)生大約有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,航拍無人機(jī)從A處測得一幢建筑物頂部B的仰角為45°,測得底部C的俯角為60°,此時航拍無人機(jī)與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為_____m(結(jié)果保留整數(shù),≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)在一個不透明的口袋裝有三個完全相同的小球,分別標(biāo)號為1、2、3.求下列事件的概率:
(1)從中任取一球,小球上的數(shù)字為偶數(shù);
(2)從中任取一球,記下數(shù)字作為點(diǎn)A的橫坐標(biāo)x,把小球放回袋中,再從中任取一球記下數(shù)字作為點(diǎn)A的縱坐標(biāo)y,點(diǎn)A(x,y)在函數(shù)的圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com