【題目】下面是小星同學(xué)設(shè)計(jì)的“過直線外一點(diǎn)作已知直線的平行線”的尺規(guī)作圖過程:
已知:如圖,直線l和直線l外一點(diǎn)A
求作:直線AP,使得AP∥l
作法:如圖
①在直線l上任取一點(diǎn)B(AB與l不垂直),以點(diǎn)A為圓心,AB為半徑作圓,與直線l交于點(diǎn)C.
②連接AC,AB,延長BA到點(diǎn)D;
③作∠DAC的平分線AP.
所以直線AP就是所求作的直線
根據(jù)小星同學(xué)設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡)
(2)完成下面的證明
證明:∵AB=AC,
∴∠ABC=∠ACB (填推理的依據(jù))
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB (填推理的依據(jù))
∴∠DAC=2∠ABC
∵AP平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l (填推理的依據(jù))
【答案】(1)詳見解析;(2)(等邊對等角),(三角形外角性質(zhì)),(同位角相等,兩直線平行).
【解析】
(1)根據(jù)角平分線的尺規(guī)作圖即可得;
(2)分別根據(jù)等腰三角形的性質(zhì)、三角形外角的性質(zhì)和平行線的判定求解可得.
解:(1)如圖所示,直線AP即為所求.
(2)證明:∵AB=AC,
∴∠ABC=∠ACB(等邊對等角),
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB(三角形外角性質(zhì)),
∴∠DAC=2∠ABC,
∵AP平分∠DAC,
∴∠DAC=2∠DAP,
∴∠DAP=∠ABC,
∴AP∥l(同位角相等,兩直線平行),
故答案為(等邊對等角),(三角形外角性質(zhì)),(同位角相等,兩直線平行).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條公路環(huán)繞山腳的部分是一段圓弧形狀(O為圓心),過A,B兩點(diǎn)的切線交于點(diǎn)C,測得∠C=120°,A,B兩點(diǎn)之間的距離為60m,則這段公路AB的長度是( )
A.10πmB.20πmC.10πmD.60m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y= 在第一象限圖象上一點(diǎn),連接OA,過點(diǎn)A作AB∥x軸(點(diǎn)B在點(diǎn)A右側(cè)),連接OB,若OB平分∠AOX,且點(diǎn)B的坐標(biāo)是(8,4),則k的值是( 。
A.6B.8C.12D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)()的圖象與反比例函數(shù)()的圖象相交于點(diǎn),.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若直線()與軸交于點(diǎn),軸上是否存在一點(diǎn),使,若存在,請求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的一個(gè)數(shù)學(xué)興趣小組在本校學(xué)生中開展了主題為“霧霾知多少”的專題調(diào)查括動,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“A.非常了解”、“B.比較了解”、“C.基本了解”、“D.不太了解”四個(gè)等級,將所得數(shù)據(jù)進(jìn)行整理后,繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,請你結(jié)合圖表中的信息解答下列問題
等級 | A | B | C | D |
頻數(shù) | 40 | 120 | 36 | n |
頻率 | 0.2 | m | 0.18 | 0.02 |
(1)表中m= ,n= ;
(2)扇形統(tǒng)計(jì)圖中,A部分所對應(yīng)的扇形的圓心角是 °,所抽取學(xué)生對丁霧霾了解程度的眾數(shù)是 ;
(3)若該校共有學(xué)生1500人,請根據(jù)調(diào)查結(jié)果估計(jì)這些學(xué)生中“比較了解”人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上一點(diǎn),∠CAB=30°,D是直徑AB上一動點(diǎn),連接CD并過點(diǎn)D作CD的垂線,與圓O的其中一個(gè)交點(diǎn)記為點(diǎn)E(點(diǎn)E位于直線CD上方或左側(cè)),連接EC.已知AB=6cm,設(shè)A、D兩點(diǎn)間的距離為xcm,C、D兩點(diǎn)間的距離為y1cm,E、C兩點(diǎn)間的距離為y2cm,小雪根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小雪的探究過程:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.2 | 4.4 | 3.6 | 3.0 | 2.7 | 2.7 |
|
y2/cm | 5.2 | 4.6 | 4.2 |
| 4.8 | 5.6 | 6.0 |
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、面圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值,請將表格補(bǔ)充完整:(保留一位小數(shù))
(2)在同一平面直角坐標(biāo)系xOy中,y2的圖象如圖所示,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)∠ECD=60°時(shí),AD的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七、八年級各選派10名選手參加學(xué)校舉辦的環(huán)保知識競賽,計(jì)分采用10分制,選手得分均為整數(shù),成績達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀.競賽后,兩支代表隊(duì)選手的不完整成績分布如下所示:
(1)通過計(jì)算,補(bǔ)全表格;
(2)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級代表隊(duì)成績比八年級代表隊(duì)好.但也有人說八年級代表隊(duì)成績比七年級代表隊(duì)好.請你給出兩條支持八年級代表隊(duì)成績較好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥合家福超市為了吸引顧客,設(shè)計(jì)了一種促銷活動:在三等分的轉(zhuǎn)盤上依次標(biāo)有“合”,“家”,“福”字樣,購物每滿200元可以轉(zhuǎn)動轉(zhuǎn)盤1次,轉(zhuǎn)盤停下后,指針?biāo)竻^(qū)域是“福”時(shí),便可得到30元購物券(指針落在分界線上不計(jì)次數(shù),可重新轉(zhuǎn)動一次),一個(gè)顧客剛好消費(fèi)400元,并參加促銷活動,轉(zhuǎn)了2次轉(zhuǎn)盤.
(1)求出該顧客可能獲得購物券的最高金額和最低金額;
(2)請用畫樹狀圖法或列表法求出該顧客獲購物券金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求R和t之間的關(guān)系式;
(2)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過4kΩ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com