【題目】某大學(xué)畢業(yè)生響應(yīng)國家自主創(chuàng)業(yè)的號召,投資開辦了一個(gè)裝怖品商店,該店采購了一種今年新上市的裝飾品進(jìn)行了30天的試銷售,購進(jìn)價(jià)格為20/件.銷售結(jié)束后,得知日銷售量P(件),銷售價(jià)格Q(元/件)與銷售時(shí)間x(天) 1≤x≤30,且x為正整數(shù))都滿足一次函數(shù)關(guān)系,其函數(shù)圖象如圖所示:

1)請直接寫出:銷售量(P件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式,銷售價(jià)格Q(元/件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式;

2)請問在30天的試銷售中,哪﹣天的日銷售利潤最大?求最大利潤.

【答案】1P=﹣2x+80;Qx+30;(2)在30天的試銷售中,第10天的日銷售利潤最大,最大利潤為900元.

【解析】

1)根據(jù)圖象利用待定系數(shù)法確定一次函數(shù)的解析式即可;

2)根據(jù)題意列出有關(guān)銷售利潤的函數(shù)關(guān)系式求得最值即可.

1)設(shè)pax+b,qcx+d,

根圖象知:

,

解得:,,

P=﹣2x+80;Qx+30

故答案為:P=﹣2x+80;Qx+30;

2)設(shè)30天的試銷售中,每天的銷售利潤為W元,則

WPQ20)=(﹣2x+80[x+30)﹣20]

=﹣x2+20x+800

W=﹣(x102+900

所以當(dāng)x10時(shí),W有最大值,W的最大值為900

所以在30天的試銷售中,第10天的日銷售利潤最大,最大利潤為900元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長線上,sin B=D30°

(1)求證AD是⊙O的切線;

(2)若AC=6,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點(diǎn)B,與y軸交于點(diǎn)C,拋物線y=﹣x2+bx+c經(jīng)過BC兩點(diǎn),與x軸另一交點(diǎn)為A.點(diǎn)P以每秒個(gè)單位長度的速度在線段BC上由點(diǎn)B向點(diǎn)C運(yùn)動(點(diǎn)P不與點(diǎn)B和點(diǎn)C重合),設(shè)運(yùn)動時(shí)間為t秒,過點(diǎn)Px軸垂線交x軸于點(diǎn)E,交拋物線于點(diǎn)M

1)求拋物線的解析式;

2)如圖,過點(diǎn)Py軸垂線交y軸于點(diǎn)N,連接MNBC于點(diǎn)Q,當(dāng)時(shí),求t的值;

3)如圖,連接AMBC于點(diǎn)D,當(dāng)△PDM是等腰三角形時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB=90°AC=6cm,BC=8cm,點(diǎn)PA出發(fā)沿ACC點(diǎn)以1厘米/秒的速度勻速移動;點(diǎn)QC出發(fā)沿CBB點(diǎn)以2厘米/秒的 速度勻速移動.點(diǎn)PQ分別從起點(diǎn)同時(shí)出發(fā),移動到某一位置時(shí)所需時(shí)間為t秒.

1)當(dāng)t= 時(shí),PQAB

2)當(dāng)t為何值時(shí),PCQ的面積等于5cm2

3)在P、Q運(yùn)動過程中,在某一時(shí)刻,若將PQC翻折,得到EPQ,如圖2,PEAB能否垂直?若能,求出相應(yīng)的t值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)的對稱軸為直線x1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),與y軸交點(diǎn)為(0,3),其部分圖象如圖所示,則下列結(jié)論錯(cuò)誤的是( 。

A. b4ac≥0

B. 關(guān)于x的方程ax+bx+c30有兩個(gè)不相等的實(shí)數(shù)根

C. ab+c0

D. 當(dāng)y0時(shí),﹣1x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,M的半徑為2,圓心M的坐標(biāo)為(34),點(diǎn)PM上的任意一點(diǎn),PAPB,且PAPBx軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對稱,則AB的最小值為( 。

A. 3B. 4C. 6D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于點(diǎn)A(﹣20)與點(diǎn)C8,0)兩點(diǎn),與y軸交于點(diǎn)B,其對稱軸與x軸交于點(diǎn)D

1)求該二次函數(shù)的解析式;

2)若點(diǎn)Pm,n)是該二次函數(shù)圖象上的一個(gè)動點(diǎn)(其中m0,n0),連結(jié)PB, PD,BD,AB.請問是否存在點(diǎn)P,使得BDP的面積恰好等于ADB的面積?若存在請求出此時(shí)點(diǎn)P的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

(一)(新知學(xué)習(xí)):圓內(nèi)接四邊形的判斷定理:如果四邊形對角互補(bǔ),那么這個(gè)四邊形內(nèi)接于圓(即如果四邊形EFGH的對角互補(bǔ),那么四邊形EFGH的四個(gè)頂點(diǎn)E、F、G、H都在同個(gè)圓上).

(二)(問題解決):已知⊙O的直徑為4,AB,CD是⊙O的直徑.P上任意一點(diǎn),過點(diǎn)P分別作AB,CD的垂線,垂足分別為N,M

1)若直徑ABCD,點(diǎn)P上一動點(diǎn)(不與BC重合)(如圖一).

證明:四邊形PMON內(nèi)接于某圓;②證明MN的長為定值,并求其定值;

2)若直徑ABCD相交成120°角.

當(dāng)點(diǎn)P運(yùn)動到的中點(diǎn)時(shí)(如圖二),求MN的長;

當(dāng)點(diǎn)P(不與B、C重合)從B運(yùn)動到C的過程中(如圖三),證明MN的長為定值.

3)試問當(dāng)直徑ABCD相交角∠BOC=______度時(shí),MN的長取最大值,其最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形中,點(diǎn)上一點(diǎn),點(diǎn)上一點(diǎn).點(diǎn)關(guān)于直線的對稱點(diǎn)恰好在延長線上,于點(diǎn).點(diǎn)的中點(diǎn),若,則=_____

查看答案和解析>>

同步練習(xí)冊答案