【題目】已知:如圖,拋物線y=ax2+bx+2與x軸的交點(diǎn)是A(3,0)、B(6,0),與y軸的交點(diǎn)是C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PQ∥y軸交直線BC于點(diǎn)Q.
①當(dāng)x取何值時(shí),線段PQ的長(zhǎng)度取得最大值,其最大值是多少?
②是否存在這樣的點(diǎn)P,使△OAQ為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)①x=3,1;②P(3,0)或或.
【解析】
試題(1)已知了A,B的坐標(biāo),可用待定系數(shù)法求出函數(shù)的解析式.
(2)①Q(mào)P其實(shí)就是一次函數(shù)與二次函數(shù)的差,二次函數(shù)的解析式在(1)中已經(jīng)求出,而一次函數(shù)可根據(jù)B,C的坐標(biāo),用待定系數(shù)法求出.那么讓一次函數(shù)的解析式減去二次函數(shù)的解析式,得出的新的函數(shù)就是關(guān)于PQ,x的函數(shù)關(guān)系式,那么可根據(jù)函數(shù)的性質(zhì)求出PQ的最大值以及相對(duì)應(yīng)的x的取值.
(3)分三種情況進(jìn)行討論:
當(dāng)∠QOA=90°時(shí),Q與C重合,顯然不合題意.因此這種情況不成立;
當(dāng)∠OAQ=90°時(shí),P與A重合,因此P的坐標(biāo)就是A的坐標(biāo);
當(dāng)∠OQA=90°時(shí),如果設(shè)QP與x軸的交點(diǎn)為D,那么根據(jù)射影定理可得出DQ2=ODDA.由此可得出關(guān)于x的方程即可求出x的值,然后將x代入二次函數(shù)式中即可得出P的坐標(biāo).
解:(1)∵拋物線過A(3,0),B(6,0),
∴,
解得:,
∴所求拋物線的函數(shù)表達(dá)式是y=x2﹣x+2.
(2)①∵當(dāng)x=0時(shí),y=2,
∴點(diǎn)C的坐標(biāo)為(0,2).
設(shè)直線BC的函數(shù)表達(dá)式是y=kx+h.
則有,
解得:.
∴直線BC的函數(shù)表達(dá)式是y=﹣x+2.
∵0<x<6,點(diǎn)P、Q的橫坐標(biāo)相同,
∴PQ=yQ﹣yP=(﹣x+2)﹣(x2﹣x+2)
=﹣x2+x
=﹣(x﹣3)2+1
∴當(dāng)x=3時(shí),線段PQ的長(zhǎng)度取得最大值.最大值是1.
②解:當(dāng)∠OAQ′=90°時(shí),點(diǎn)P與點(diǎn)A重合,
∴P(3,0)
當(dāng)∠Q′OA=90°時(shí),點(diǎn)P與點(diǎn)C重合,
∴x=0(不合題意)
當(dāng)∠OQ′A=90°時(shí),
設(shè)PQ′與x軸交于點(diǎn)D.
∵∠OQ′D+∠AOQ′=90°,∠Q′AD+∠AQ′D=90°,
∴∠OQ′D=∠Q′AD.
又∵∠ODQ′=∠Q′DA=90°,
∴△ODQ′∽△Q′DA.
∴,即DQ′2=ODDA.
∴(﹣x+2)2=x(3﹣x),
10x2﹣39x+36=0,
∴x1=,x2=,
∴y1=×()2﹣+2=;
y2=×()2﹣+2=;
∴P(,)或P(,).
∴所求的點(diǎn)P的坐標(biāo)是P(3,0)或P(,)或P(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:四邊形AFCE是平行四邊形;
(2)填空:①當(dāng)t為 s時(shí),四邊形ACFE是菱形;②當(dāng)t為 s時(shí),△ACE的面積是△ACF的面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,⊙O過AC的中點(diǎn)D,DE⊥BC于點(diǎn)E.
(1)求證:DE為⊙O的切線;
(2)若DE=2,tanC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論(1)4a+2b+c>0;(2)方程ax2+bx+c=0兩根之和小于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過第二象限.其中正確的個(gè)數(shù)是( )
A. 4 個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分線交 BC 于點(diǎn) D,交AC 于點(diǎn) E.
(1)判斷 BE 與△DCE 的外接圓⊙O 的位置關(guān)系,并說明理由;
(2)若 BE=,BD=1,求△DCE 的外接圓⊙O 的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.
(1)試判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)道路改造工程,由甲、乙兩工程隊(duì)合作20天可完成.甲工程隊(duì)單獨(dú)施工比乙工程隊(duì)單獨(dú)施工多用30天完成此項(xiàng)工程.
(1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?
(2)若甲工程隊(duì)獨(dú)做a天后,再由甲、乙兩工程隊(duì)合作 天(用含a的代數(shù)式表示)可完成此項(xiàng)工程;
(3)如果甲工程隊(duì)施工每天需付施工費(fèi)1萬(wàn)元,乙工程隊(duì)施工每天需付施工費(fèi)2.5萬(wàn)元,甲工程隊(duì)至少要單獨(dú)施工多少天后,再由甲、乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過64萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過菱形OACD的頂點(diǎn)D和邊AC的中點(diǎn)E,若菱形OACD的邊長(zhǎng)為3,則k的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com