【題目】有一直角三角形兩直角邊分別為6、8,在其外部拼上一個(gè)以8為直角邊的直角三角形,此時(shí)變成等腰三角形,則該等腰三角形的周長是__________

【答案】3220+

【解析】

根據(jù)勾股定理求出斜邊AB,(1)當(dāng)AB=AD時(shí),求出CD即可;(2)當(dāng)AB=BD時(shí),求出CD、AD即可;(3)當(dāng)DA=DB時(shí),設(shè)AD=x,則CD=x-6,求出即可.

如圖1,在RtABC中,

AC=8cm,BC=6cm,
AB=10cm
1)如圖1所示:
當(dāng)AB=AD=10cm時(shí),CD=6cm,
ABD的周長為10cm+10cm+6cm+6cm=32cm
2)如圖2所示:


當(dāng)AB=BD=10cm時(shí),則CD=BD-BC=10-6=4(cm)

(cm),
ABD的周長是10cm+10cm+cm=(20+)cm;
3)當(dāng)DA=DB時(shí),如圖2所示:
設(shè),則,

,即,

解得:,

∴△ABD的周長是10cm+cm+cm=cm

故答案為:3220+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=8cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A開始沿AB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)B開始沿BC運(yùn)動(dòng),速度為4cm/s設(shè)P、Q兩點(diǎn)同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為ts(0<t<4),當(dāng)QBPABC相似時(shí),求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(1)班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:

(Ⅰ)如圖5-1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接ACBC,并分別延長ACD,BCE,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;

(Ⅱ)如圖5-2,先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過DBD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.

閱讀后1回答下列問題:

1)方案(Ⅰ)是否可行?說明理由.

2)方案(Ⅱ)是否可行?說明理由.

3)方案(Ⅱ)中作BFAB,EDBF的目的是 ;若僅滿足∠ABD=BDE90°, 方案(Ⅱ)是否成立? .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會(huì)大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明元旦前到文具超市用15元買了若干練習(xí)本,元旦這一天,該超市開展優(yōu)惠活動(dòng),同樣的練習(xí)本比元旦前便宜0.2元,小明又用20.7元錢買練習(xí)本,所買練習(xí)本的數(shù)量比上一次多50%,小明元旦前在該超市買了多少本練習(xí)本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段,中點(diǎn) 上一點(diǎn),交于點(diǎn)

1如圖當(dāng)OA=OB中點(diǎn)時(shí),的值;

2如圖,當(dāng)OA=OB,=時(shí)求tan

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且ABAE,延長ABDE的延長線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EBC上的一點(diǎn),連結(jié)AE,作BF⊥AE,垂足為H,CDF,CG∥AE,BFG.

求證:(1CG=BH;(2FC2=BF·GF;(3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在ABC中,ACB=90°,AC=4cm,BC=3cm,如果點(diǎn)P從點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為1cm/s,連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為ts)(0t4).

1)當(dāng)t為何值時(shí),PQBC;

2)是否存在某時(shí)刻t,使線段PQ恰好把ABC的面積平分?若存在,求出此時(shí)t的值;若不存在,請說明理由;

3)如圖乙,連接PC,將PQC沿QC翻折,得到四邊形PQPC,當(dāng)四邊形PQPC為菱形時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊答案