【題目】如圖,ABC,AB=AC=10厘米,BC=12厘米,DBC的中點,PB出發(fā),a厘米/(a>0)的速度沿BA勻速向點A運(yùn)動,點Q同時以1厘米/秒的速度從D出發(fā),沿DB勻速向點B運(yùn)動,其中一個動點到達(dá)終點時,另一個動點也隨之停止運(yùn)動,設(shè)它們的運(yùn)動時間為t秒。

(1)a=t=2,求證:ABC∽△PBQ2)若a=2,那么t為何值時,以 BP、Q為頂點的三角形與ABD相似?說明理由。

【答案】(1)見解析;(2)見解析.

【解析】

1)根據(jù)題意將PBBQ的長分別計算出來,然后根據(jù)以及∠B=∠B證明即可

(2)根據(jù)題意,一共有兩種相似情況:△BPQ∽△BDA或△BQP∽△BDA,然后利用代數(shù)式表達(dá)出各自情況下BP、BQ的值,利用三角形相似的性質(zhì)建立方程計算即可

1)當(dāng)t=2時,BP=;BQ=

=

又∵∠B=∠B

ABC∽△PBQ

(2)當(dāng)時,BP=2t,DQ=t

∵D是BC中點,BC=12

∴BD=DC=6

∴BQ=6-t

當(dāng)△BPQ∽△BDA時,

則有:

∵BP=2t,BD=6,BQ=6-t,BA=10

解得

當(dāng)△BQP∽△BDA時,

則有

∵BP=2t,BD=6,BQ=6-t,BA=10

解得

∴當(dāng)時,ss時,△BQP與△BDA相似

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格上有A、B、O三點,如果用(3,3)表示方格紙上A點的位置,(1,1)表示B點的位置,O點也在網(wǎng)格點上.

1)作出點B關(guān)于直線OA的軸對稱點C,寫出點C坐標(biāo).(不寫作法,但要在圖中標(biāo)出字母);

2)作出△ABC關(guān)于點O的中心對稱圖形△ABC′,寫出A′、B′、C′三點的坐標(biāo);(不寫作法,但要標(biāo)出字母);

3)若網(wǎng)格上的最小正方形邊長為1,求出△ABC′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△和△都是等腰直角三角形, , , , 的中點.若將△繞點旋轉(zhuǎn)一周,則線段長度的取值范圍是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊等腰三角形白鐵皮余料ABC,它的腰AB10cm,底邊BC12cm

1)圓圓同學(xué)想從中裁出最大的圓,請幫他求出該圓的半徑;

2)方方同學(xué)想從中裁出最大的正方形,請幫他求出該正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點,其中點的坐標(biāo)為,點的坐標(biāo)為.

1)根據(jù)圖象,直接寫出滿足的取值范圍;

2)求這兩個函數(shù)的表達(dá)式;

3)點在線段上,且,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格中,△OAB的頂點坐標(biāo)分別為O0,0)、A(﹣2,﹣1),B(﹣1,﹣3),△O1A1B1與△OAB是關(guān)于點P為位似中心的位似圖形.

1)在圖中標(biāo)出位似中心P的位置,并寫出點P的坐標(biāo)及△O1A1B1與△OAB的相似比;

2)以原點O為位似中心,在y軸的左側(cè)畫出△OAB的另一個位似△OA2B2,使它與△OAB的相似比為21,并寫出點B的對應(yīng)點B2的坐標(biāo).

3)△OA2B2的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個二次函數(shù)滿足以下條件:

①函數(shù)圖象與x軸的交點坐標(biāo)分別為A(1,0),B(x2,y2)(點B在點A的右側(cè));

②對稱軸是x=3;

③該函數(shù)有最小值是﹣2.

(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;

(2)將該函數(shù)圖象xx2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

(1)求出該函數(shù)圖象的頂點坐標(biāo),對稱軸,圖象與軸、軸的交點坐標(biāo);

(2)在什么范圍內(nèi)時,的增大而增大?當(dāng)在什么范圍內(nèi)時,的增大而減。

(3)當(dāng)在什么范圍內(nèi)時,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0,b,c為常數(shù))的圖象如圖所示,下列5個結(jié)論:abc0;②ba+c;③4a+2b+c0;④3b2c;⑤a+bmam+b)(m為常數(shù),且m≠1),其中正確的結(jié)論有_____

查看答案和解析>>

同步練習(xí)冊答案