【題目】已知二次函數(shù)y=ax2+bx+c(a<0,b,c為常數(shù))的圖象如圖所示,下列5個(gè)結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④3b>2c;⑤a+b>m(am+b)(m為常數(shù),且m≠1),其中正確的結(jié)論有_____.
【答案】①③④⑤
【解析】
根據(jù)拋物線開口方向可以判定a的符號(hào),根據(jù)對稱軸位置和a的符號(hào)可以確定b的符號(hào),根據(jù)拋物線與y軸交點(diǎn)可確定c的符號(hào),根據(jù)韋達(dá)定理可確定a與b和a與c的關(guān)系,根據(jù)二次函數(shù)圖象與各項(xiàng)系數(shù)關(guān)系進(jìn)行解答即可.
解:由圖象可得,
a<0,b>0,c>0,
∴abc<0,故①正確,
當(dāng)x=﹣1時(shí),y=a﹣b+c<0,則b>a+c,故②錯(cuò)誤,
∵對稱軸為直線x=1,
∴x=0時(shí)和x=2時(shí)的函數(shù)值相等,當(dāng)x=2時(shí),y=4a+2b+c>0,故③正確,
∵1,則b=﹣2a,
∵x=﹣1時(shí),y=a﹣b+c<0,
∴2a﹣2b+2c<0,故﹣3b+2c<0,
∴3b>2c,故④正確,
∵當(dāng)x=1時(shí),此函數(shù)取得最大值,此時(shí)y=a+b+c=1,
∴當(dāng)x=m≠1時(shí),am2+bm+c<a+b+c,
∴m(am+b)<a+b,故⑤正確,
故答案為:①③④⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點(diǎn),點(diǎn)P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q同時(shí)以1厘米/秒的速度從D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒。
(1)若a=,t=2,求證:△ABC∽△PBQ(2)若a=2,那么t為何值時(shí),以 B、P、Q為頂點(diǎn)的三角形與△ABD相似?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生上課時(shí)注意力集中的程度可以用注意力指數(shù)表示.某班學(xué)生在一節(jié)數(shù)學(xué)課中的注意力指數(shù)隨上課時(shí)間(分鐘)的變化圖象如圖.上課開始時(shí)注意力指數(shù)為30,第10分鐘時(shí)注意力指數(shù)為80,前10分鐘內(nèi)注意力指數(shù)是時(shí)間的一次函數(shù).10分鐘以后注意力指數(shù)是的反比例函數(shù).
(1)求出時(shí)和時(shí),求關(guān)于的函數(shù)關(guān)系式;
(2)如果講解一道較難的數(shù)學(xué)題要求學(xué)生的注意力指數(shù)不小于50,為了保證教學(xué)效果本節(jié)課講完這道題不能超過多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若實(shí)數(shù)a,b滿足a+b=1時(shí),就稱點(diǎn)P(a,b)為“平衡點(diǎn)”.
(1)判斷點(diǎn)A(3,﹣4)、B(-1,2-)是不是平衡點(diǎn);
(2)已知拋物線y=x2+(p﹣t﹣1)x+q+t﹣3(t>3)上有且只有一個(gè)“平衡點(diǎn)”,且當(dāng)﹣2≤p≤3時(shí),q的最小值為t,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,正方形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)E為AB上一點(diǎn)(不與A.B兩點(diǎn)重合),過點(diǎn)O,A,E的⊙I交AD于F,AB=5
(1)求⊙I的直徑的取值范圍;
(2)若⊙I的半徑為2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(-3,0),其對稱軸為直線x=-1,有下列結(jié)論:①abc<0;②a-b-2c>0;③關(guān)于的方程ax2+(b-m)x+c=m有兩個(gè)不相等的實(shí)數(shù)根;④若,是拋物線上兩點(diǎn),且,則實(shí)數(shù)的取值范圍是.其中正確結(jié)論的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“只要人人獻(xiàn)出一點(diǎn)愛,世界將變成美好的人間”.某大學(xué)利用“世界獻(xiàn)血日”開展自愿義務(wù)獻(xiàn)血活動(dòng),經(jīng)過檢測,獻(xiàn)血者血型有“A、B、AB、O”四種類型,隨機(jī)抽取部分獻(xiàn)血結(jié)果進(jìn)行統(tǒng)計(jì),根據(jù)結(jié)果制作了如圖兩幅不完整統(tǒng)計(jì)圖表(表,圖):
血型統(tǒng)計(jì)表
血型 | A | B | AB | O |
人數(shù) |
| 10 | 5 |
|
(1)本次隨機(jī)抽取獻(xiàn)血者人數(shù)為 人,圖中m= ;
(2)補(bǔ)全表中的數(shù)據(jù);
(3)若這次活動(dòng)中該校有1300人義務(wù)獻(xiàn)血,估計(jì)大約有多少人是A型血?
(4)現(xiàn)有4個(gè)自愿獻(xiàn)血者,2人為O型,1人為A型,1人為B型,若在4人中隨機(jī)挑選2人,利用樹狀圖或列表法求兩人血型均為O型的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,E,F分別是DC和CB的延長線上的點(diǎn),且BF=DE,連接AE,AF,EF.
(1)判斷△ABF與△ADE有怎樣的關(guān)系,并說明理由;
(2)求∠EAF的度數(shù),寫出△ABF可以由△ADE經(jīng)過怎樣的圖形變換得到;
(3)若BC=6,DE=2,求△AEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com