【題目】已知:甲、乙兩車分別從相距300千米的 A,B兩地同時(shí)出發(fā)相向而行,其中甲到 B地后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象

(1)求甲車離出發(fā)地的距離 y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)當(dāng)它們行駛到與各自出發(fā)地的距離相等時(shí),用了 小時(shí),求乙車離出發(fā)地的距離 y(千米)與行駛時(shí)間 x(小時(shí))之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,求它們?cè)谛旭偟倪^程中相遇的時(shí)間.

【答案】見解析

【解析】分析:

(1)由圖知,該函數(shù)關(guān)系在不同的時(shí)間里表現(xiàn)成不同的關(guān)系,需分段表達(dá).當(dāng)行駛時(shí)間小于3時(shí)是正比例函數(shù);當(dāng)行使時(shí)間大于3小于時(shí)是一次函數(shù).可根據(jù)待定系數(shù)法列方程,求函數(shù)關(guān)系式.
(2)4.5小時(shí)大于3,代入一次函數(shù)關(guān)系式,計(jì)算出乙車在用了小時(shí)行使的距離.從圖象可看出求乙車離出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間是正比例函數(shù)關(guān)系,用待定系數(shù)法可求解.
(3)兩者相向而行,相遇時(shí)甲、乙兩車行使的距離之和為300千米,列出方程解答,由題意有兩次相遇.

詳解:

1(1)當(dāng)0x3時(shí),是正比例函數(shù),設(shè)為y=kx,

x=3時(shí),y=300,代入解得k=100,所以y=100x;

當(dāng)3x 時(shí),是一次函數(shù),設(shè)為y=kx+b,

代入兩點(diǎn)(3,300)、(,0),得

解得

所以y=540﹣80x.

綜合以上得甲車離出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)關(guān)系式 為:y=

(2)當(dāng)x=時(shí),y=540﹣80×=180;

乙車過點(diǎn)(,180),y=40x.(0x

(3)由題意有兩次相遇.

①當(dāng)0x3,100x+40x=300,解得x= ;

②當(dāng)3x時(shí),(540﹣80x)+40x=300,解得x=6.

綜上所述,兩車第一次相遇時(shí)間為第小時(shí),第二次相遇時(shí)間為第6小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c滿足

(1)求a,b,c的值;

(2)試問以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,求出三角形的周長;若不能構(gòu)成三角形,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018“體彩杯”重慶開州漢豐湖半程馬拉松賽開跑前一周,某校七年級(jí)數(shù)學(xué)研究學(xué)習(xí)小組在某十字路口隨機(jī)調(diào)查部分市民對(duì)“半馬拉松賽”的了解情況,統(tǒng)計(jì)結(jié)果后繪制了如圖的兩副不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

A

50<n≤60

B

60<n≤70

C

70<n≤80

D

80<n≤90

E

90<n≤100

(1)本次調(diào)查的總?cè)藬?shù)為   人,在扇形統(tǒng)計(jì)圖中“C”所在扇形的圓心角的度數(shù)為   度;

(2)補(bǔ)全頻數(shù)分布圖;

(3)若在這一周里,該路口共有7000人通過,請(qǐng)估計(jì)得分超過80的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于實(shí)數(shù)a、b,定義一種運(yùn)算為:ab=a2 +ab-2,有下列命題:

13=2;

②方程x1=0的根為:x1 =-2,x2 =1;

③不等式組 的解集為:-1<x<4;

④點(diǎn)()在函數(shù)y=x(-1)的圖象上.

其中正確的是(

A. ①②③④ B. ①③ C. ①②③ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從-1,1,2這三個(gè)數(shù)字中,隨機(jī)抽取一個(gè)數(shù)記為a,那么,使關(guān)于x的一次函數(shù)y2xa的圖象與x軸、y軸圍成的三角形的面積為,且使關(guān)于x的不等式組有解的概率為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在購買某場(chǎng)足球賽門票時(shí),設(shè)購買門票數(shù)為x(張),總費(fèi)用為y(元).現(xiàn)有兩種購買方案:

方案一:若單位贊助廣告費(fèi)10000元,則該單位所購門票的價(jià)格為每張60元;

(總費(fèi)用=廣告贊助費(fèi)+門票費(fèi))

方案二:購買門票方式如圖所示.

解答下列問題:

(1)方案一中,y與x的函數(shù)關(guān)系式為

方案二中,當(dāng)0x100時(shí),y與x的函數(shù)關(guān)系式為 ,

當(dāng)x>100時(shí),y與x的函數(shù)關(guān)系式為 ;

(2)如果購買本場(chǎng)足球賽門票超過100張,你將選擇哪一種方案,使總費(fèi)用最。空(qǐng)說明理由;

(3)甲、乙兩單位分別采用方案一、方案二購買本場(chǎng)足球賽門票共700張,花去總費(fèi)用計(jì)58000元,求甲、乙兩單位各購買門票多少張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置可得到點(diǎn)P1,此時(shí)AP1=;將位置的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置可得到點(diǎn)P2,此時(shí)AP2=+1;將位置的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置可得到點(diǎn)P3時(shí),AP3=+2…按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)為止,則=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,定義直線x=m與雙曲線yn=的交點(diǎn)Am , n(m、n為正整數(shù))為“雙曲格點(diǎn)”,雙曲線yn=在第一象限內(nèi)的部分沿著豎直方向平移或以平行于x軸的直線為對(duì)稱軸進(jìn)行翻折之后得到的函數(shù)圖象為其“派生曲線”.

(1)①“雙曲格點(diǎn)”A2 , 1的坐標(biāo)為 ;②若線段A4 , 3A4 , n的長為1個(gè)單位長度,則n= ;
(2)圖中的曲線f是雙曲線y1=的一條“派生曲線”,且經(jīng)過點(diǎn)A2 , 3 , 則f的解析式為y=
(3)畫出雙曲線y3=的“派生曲線”g(g與雙曲線y3=不重合),使其經(jīng)過“雙曲格點(diǎn)”A2 , a、A3 , 3、A4 , b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB3,BC2,若ACAD且∠ACD60°,則對(duì)角線BD的長最大值為______________

查看答案和解析>>

同步練習(xí)冊(cè)答案