【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO的邊AB垂直與x軸,垂足為點(diǎn)B,反比例函數(shù)y= (x>0)的圖象經(jīng)過AO的中點(diǎn)C,且與AB相交于點(diǎn)D,OB=4,AD=3,

(1)求反比例函數(shù)y= 的解析式;
(2)求cos∠OAB的值;
(3)求經(jīng)過C、D兩點(diǎn)的一次函數(shù)解析式.

【答案】
(1)

解:設(shè)點(diǎn)D的坐標(biāo)為(4,m)(m>0),則點(diǎn)A的坐標(biāo)為(4,3+m),

∵點(diǎn)C為線段AO的中點(diǎn),

∴點(diǎn)C的坐標(biāo)為(2, ).

∵點(diǎn)C、點(diǎn)D均在反比例函數(shù)y= 的函數(shù)圖象上,

,解得:

∴反比例函數(shù)的解析式為y=


(2)

解:∵m=1,

∴點(diǎn)A的坐標(biāo)為(4,4),

∴OB=4,AB=4.

在Rt△ABO中,OB=4,AB=4,∠ABO=90°,

∴OA= =4 ,cos∠OAB= =


(3)

解:∵m=1,

∴點(diǎn)C的坐標(biāo)為(2,2),點(diǎn)D的坐標(biāo)為(4,1).

設(shè)經(jīng)過點(diǎn)C、D的一次函數(shù)的解析式為y=ax+b,

則有 ,解得:

∴經(jīng)過C、D兩點(diǎn)的一次函數(shù)解析式為y=﹣ x+3


【解析】(1)設(shè)點(diǎn)D的坐標(biāo)為(4,m)(m>0),則點(diǎn)A的坐標(biāo)為(4,3+m),由點(diǎn)A的坐標(biāo)表示出點(diǎn)C的坐標(biāo),根據(jù)C、D點(diǎn)在反比例函數(shù)圖象上結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出關(guān)于k、m的二元一次方程,解方程即可得出結(jié)論;(2)由m的值,可找出點(diǎn)A的坐標(biāo),由此即可得出線段OB、AB的長(zhǎng)度,通過解直角三角形即可得出結(jié)論;(3)由m的值,可找出點(diǎn)C、D的坐標(biāo),設(shè)出過點(diǎn)C、D的一次函數(shù)的解析式為y=ax+b,由點(diǎn)C、D的坐標(biāo)利用待定系數(shù)法即可得出結(jié)論.本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、解直角三角形以及待定系數(shù)法求函數(shù)解析式,解題的關(guān)鍵是(1)由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出關(guān)于k、m的二元一次方程組(2)求出點(diǎn)A的坐標(biāo);(2)求出點(diǎn)C、D的坐標(biāo).本題屬于基礎(chǔ)題,難度不大,但考查的知識(shí)點(diǎn)較多,解決該題型題目時(shí),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出方程組,通過解方程組得出點(diǎn)的坐標(biāo),再利用待定系數(shù)法求出函數(shù)解析式即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知正方形的邊長(zhǎng)為4,甲、乙兩動(dòng)點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時(shí)沿正方形的邊開始移動(dòng),甲點(diǎn)依順時(shí)針方向環(huán)行,乙點(diǎn)依逆時(shí)針方向環(huán)行,若乙的速度是甲的速度的3,則它們第2018次相遇在邊)上.

A. AB B. BC C. CD D. DA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是一高為4米的平臺(tái),AB是與CD底部相平的一棵樹,在平臺(tái)頂C點(diǎn)測(cè)得樹頂A點(diǎn)的仰角α=30°,從平臺(tái)底部向樹的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測(cè)得樹頂A點(diǎn)的仰角β=60°,求樹高AB(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在現(xiàn)今互聯(lián)網(wǎng)+”的時(shí)代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡(jiǎn)單密碼又容易被破解,因此利用簡(jiǎn)單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用因式分解法產(chǎn)生的密碼、方便記憶,其原理是:將一個(gè)多項(xiàng)式分解因式,如多項(xiàng)式:因式分解的結(jié)果為,當(dāng)時(shí),此時(shí)可以得到數(shù)字密碼171920.

(1)根據(jù)上述方法,當(dāng)時(shí),對(duì)于多項(xiàng)式分解因式后可以形成哪些數(shù)字密碼?(寫出三個(gè))

(2)若一個(gè)直角三角形的周長(zhǎng)是24,斜邊長(zhǎng)為10,其中兩條直角邊分別為x、y,求出一個(gè)由多項(xiàng)式分解因式后得到的密碼(只需一個(gè)即可);

(3)若多項(xiàng)式因式分解后,利用本題的方法,當(dāng)時(shí)可以得到其中一個(gè)密碼為242834,mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6張小長(zhǎng)方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長(zhǎng)方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個(gè)長(zhǎng)方形,面積分別為S1S2.已知小長(zhǎng)方形紙片的長(zhǎng)為a,寬為b,且a>b.當(dāng)AB長(zhǎng)度不變而BC變長(zhǎng)時(shí),將6張小長(zhǎng)方形紙片還按照同樣的方式放在新的長(zhǎng)方形ABCD內(nèi),S1S2的差總保持不變,則a,b滿足的關(guān)系是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過點(diǎn)D作DE⊥AF,垂足為點(diǎn)E
(1)求證:DE=AB;
(2)以A為圓心,AB長(zhǎng)為半徑作圓弧交AF于點(diǎn)G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為()
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上,A、B兩點(diǎn)表示的數(shù)ab滿足|a﹣6|+(b+12)2=0

(1)a=   ,b=   ;

(2)若小球MA點(diǎn)向負(fù)半軸運(yùn)動(dòng)、小球NB點(diǎn)向正半軸運(yùn)動(dòng),兩球同時(shí)出發(fā),小球M運(yùn)動(dòng)的速度為每秒2個(gè)單位,當(dāng)M運(yùn)動(dòng)到OB的中點(diǎn)時(shí),N點(diǎn)也同時(shí)運(yùn)動(dòng)到OA的中點(diǎn),則小球N的速度是每秒   個(gè)單位;

(3)若小球M、N保持(2)中的速度,分別從A、B兩點(diǎn)同時(shí)出發(fā),經(jīng)過   秒后兩個(gè)小球相距兩個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算
(1)計(jì)算:( 2+| ﹣2|+3tan30°
(2)先化簡(jiǎn),再求值: ÷ ,其中x=﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案