【題目】為激發(fā)學生的閱讀興趣,培養(yǎng)學生良好的閱讀習慣,我區(qū)某校欲購進一批學生喜歡的圖書,學校組織學生會隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據調查結果繪制了統(tǒng)計圖(未完成),請根據圖中信息,解答下列問題:
(1)填空或選擇:此次共調查了______名學生;圖2中“小說類”所在扇形的圓心角為______度;學生會采用的調查方式是______.A.普查 B.抽樣調查
(2)將條形統(tǒng)計圖(圖1)補充完整;
(3)若該校共有學生2500人,試估計該校喜歡“社科類”書籍的學生人數.
【答案】(1)200,126,B;(2)見解析;(3)300
【解析】
(1)根據文史類的人數除以占的百分比求出調查的學生總數,進而求出小說類的百分比,乘以360°即可求出占的圓心角,進而判斷調查的方式即可;
(2)根據題意求出生活類與小說類的人數,補全條形統(tǒng)計圖即可;
(3)由題意求出社科類的百分比,進而乘以2500即可得到結果.
解:(1)根據題意得:76÷38%=200(人),生活類的人數為200×15%=30(人),小說類的人數為200-(24+76+30)=70(人),即×360°=126°,
則此次共調查了200名學生;圖2中“小說類”所在扇形的圓心角為126度;學生會采用的調查方式是B;
故答案為:200;126;B;
(2)補全統(tǒng)計圖,如圖所示:
(3)根據題意得:2500××100%=2500×12%=300(人),
則估計該校喜歡“社科類”書籍的學生人數為300人
科目:初中數學 來源: 題型:
【題目】在中,,,.
(1)如圖1,折疊使點落在邊上的點處,折痕交、分別于點、,若,則________.
(2)如圖2,折疊使點落在邊上的點處,折痕交、分別于點、.若,求證:四邊形是菱形;
(3)在(1)(2)的條件下,線段上是否存在點,使得和相似?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:兩條長度相等,且它們所在的直線互相垂直的線段,我們稱其互為“等垂線段”.
知識應用:在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC, ∠ACB=∠AED=90°,連接BD,點P是線段BD的中點,連接PC,PE.
(1)如圖1,當AE在線段AC上時,線段PC與線段PE是否互為“等垂線段”?請說明理由.
(2)如圖2,將圖1中的△ADE繞點A順時針旋轉90°,點D落在AB邊上,請說明線段PC與線段PE互為“等垂線段”.
拓展延伸:(3)將圖1中的△ADE繞點A順時針旋轉150°,若BC=3,DE=1,求PC的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在由邊長為1的小正方形組成的網格圖中,有一個格點三角形ABC.(注:頂點均在網格線交點處的三角形稱為格點三角形.)
(1)△ABC是 三角形(填“銳角”、“直角”或“鈍角”);
(2)若P、Q分別為線段AB、BC上的動點,當PC+PQ取得最小值時,
① 在網格中用無刻度的直尺,畫出線段PC、PQ.(請保留作圖痕跡.)
② 直接寫出PC+PQ的最小值: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,點A的坐標為(0,8),點 B(b,t)在直線x=b上運動,點D、E、F分別為OB、0A、AB的中點,其中b是大于零的常數.
(1)判斷四邊形DEFB的形狀.并證明你的結論;
(2)試求四邊形DEFB的面積S與b的關系式;
(3)設直線x=b與x軸交于點C,問:四邊形DEFB能不能是矩形?若能.求出t的值;若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O 中,點 C 在優(yōu)弧 AB 上,將弧 BC 沿直線 BC 折疊后剛好經過弦 AB 的 中點 D.若⊙O 的半徑為,AB=4,則 BC 的長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解密數學魔術:魔術師請觀眾心想一個數,然后將這個數按以下步驟操作:
魔術師能立刻說出觀眾想的那個數.
(1)如果小玲想的數是,請你通過計算幫助她告訴魔術師的結果;
(2)如果小明想了一個數計算后,告訴魔術師結果為85,那么魔術師立刻說出小明想的那個數是:__________;
(3)觀眾又進行了幾次嘗試,魔術師都能立刻說出他們想的那個數.若設觀眾心想的數為,請你按照魔術師要求的運算過程列代數式并化簡,再用一句話說出這個魔術的奧妙.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A(m,3)、B(6,n)在雙曲線y=(x>0)上,直線y=ax+b經過A、B兩點,并與x軸、y軸分別相交手C、D兩點,已知S△OAB=8.
(1)求雙曲線y=的函數表達式;
(2)求△COD的周長;
(3)直接寫出不等式-ax>b的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com