【題目】將兩塊大小相同的含30°角的直角三角板(∠BAC=∠BAC30°)按圖方式放置,固定三角板ABC,然后將三角板ABC繞直角頂點(diǎn)C順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°)至圖所示的位置,ABAC交于點(diǎn)EACAB′交于點(diǎn)F,ABAB′相交于點(diǎn)O

1)當(dāng)旋轉(zhuǎn)角為   度時(shí),CFCB′;

2)在上述條件下,ABAB′垂直嗎?請(qǐng)說明理由.

【答案】(1)30;(2ABAB′,理由詳見解析.

【解析】

1)由CFCB′可知∠CFB′=∠CBF60°,從而可求得∠FCB′的度數(shù),然后可求得∠ACA30°;

2)由∠ACA30°,可求得∠ECB60°,然后可求得∠AEO=∠BEC60°,從而可求得∠AOE90°.

解:(1∵CFCB′,

∴∠CFB′∠CB′F60°

∴∠A′CA90°∠FCB′90°60°30°

故旋轉(zhuǎn)角為30°時(shí),CFCB′;

故答案為:30°

2∵∠A′CA30°,

∴∠BCE∠ACB∠A′CA90°30°60°

∴∠B∠BCE∠BEC60°

∴∠A′EO60°

∴∠A′EO+∠A′60°+30°90°

∴∠A′OE90°

∴AB⊥A′B′

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+mx+nx軸于點(diǎn)A﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C0,2).

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)M在拋物線上,且SAOM=2SBOC,求點(diǎn)M的坐標(biāo);

3)如圖2,設(shè)點(diǎn)N是線段AC上的一動(dòng)點(diǎn),作DNx軸,交拋物線于點(diǎn)D,求線段DN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且.

1)求函數(shù)的表達(dá)式.

2)已知直線軸相交于點(diǎn)在第一象限內(nèi),求反比例函數(shù)的圖象上一點(diǎn),使得.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架《九章算術(shù)》中記

載:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?如圖

閱讀完這段文字后,小智畫出了一個(gè)圓柱截面示意圖如圖,其中BOCD于點(diǎn)A,求間徑就是要求O的直徑再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____一尺等于十寸,通過運(yùn)用有關(guān)知識(shí)即可解決這個(gè)問題請(qǐng)你補(bǔ)全題目條件,并幫助小求出O的直徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SPO的半徑長;若點(diǎn)P與圓心O不重合,作射線OP交O于點(diǎn)A,則SP為線段AP的長度.

圖1為點(diǎn)P在O外的情形示意圖.

(1)若點(diǎn)B(1,0),C(1,1),D(0,),則SB= ;SC= ;SD= ;

(2)若直線y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;

(3)已知點(diǎn)P,Q在x軸上,R為線段PQ上任意一點(diǎn).若線段PQ上存在一點(diǎn)T,滿足T在O內(nèi)且STSR,直接寫出滿足條件的線段PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在反比例函數(shù)y=圖象的第一象限的那一支上,AB垂直于y軸于點(diǎn)B,點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且EC=AC,點(diǎn)D為OB的中點(diǎn),若ADE的面積為5,則k的值為( 。

A. B. 10 C. D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+cm=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論:b2﹣4ac<0;②abc>0;③ab+c<0;④m>﹣2,其中,正確的個(gè)數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一個(gè)直角墻角修建一個(gè)梯形儲(chǔ)料場ABCD,其中∠C120°.若新建墻BCCD總長為12m,則該梯形儲(chǔ)料場ABCD的最大面積是(

A.18m2B.m2C.m2D.m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+3與拋物線y=x2相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).

(1)求點(diǎn)AB的坐標(biāo);

(2)連結(jié)OA,OB,求△OAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案