【題目】在平面直角坐標(biāo)系xOy中,O的半徑為1,P是坐標(biāo)系內(nèi)任意一點,點P到O的距離SP的定義如下:若點P與圓心O重合,則SPO的半徑長;若點P與圓心O不重合,作射線OP交O于點A,則SP為線段AP的長度.

圖1為點P在O外的情形示意圖.

(1)若點B(1,0),C(1,1),D(0,),則SB= ;SC= ;SD=

(2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;

(3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在O內(nèi)且STSR,直接寫出滿足條件的線段PQ長度的最大值.

【答案】(1)0;1;;

(2)b的取值范圍是3b3;

(3)線段PQ長度的最大值為1+2+1=4.

【解析】

試題分析:(1)根據(jù)點的坐標(biāo)和新定義解答即可;

(2)根據(jù)直線y=x+b的特點,結(jié)合SM=2,根據(jù)等腰直角三角形的性質(zhì)解答;

(3)根據(jù)T在O內(nèi),確定ST的范圍,根據(jù)給出的條件、結(jié)合圖形求出滿足條件的線段PQ長度的最大值.

試題解析:(1)點B(1,0),SB=0,C(1,1),SC=1,D(0,),SD=,故答案為:0;1;,;

(2)設(shè)直線y=x+b與分別與x軸、y軸交于F、E,作OGEF于G,

∵∠FEO=45°,OG=GE,當(dāng)OG=3時,GE=3,

由勾股定理得,OE=3,此時直線的解析式為:y=x+3,

直線y=x+b上存在點M,使得SM=2,b的取值范圍是3b3

(3)T在O內(nèi),ST1,STSR,SR1,

線段PQ長度的最大值為1+2+1=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c為△ABC的三邊,且滿足a2c2b2c2a4b4,則△ABC是( 。

A.直角三角形B.等腰三角形

C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標(biāo)分別為A(-4,5),C(-1,3).

(1)請在如圖所示的網(wǎng)格內(nèi)作出x軸、y軸;

(2)請作出ABC關(guān)于y軸對稱的A1B1C1;

(3)寫出點B1的坐標(biāo)并求出A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點A(﹣3,0)和點B,與y軸交于點C(0,3),頂點為點D,對稱軸DE交x軸于點E,連接AD,AC,DC.

(1)求拋物線的函數(shù)表達(dá)式.

(2)判斷ADC的形狀,并說明理由.

(3)對稱軸DE上是否存在點P,使點P到直線AD的距離與到x軸的距離相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x2+(2m1)x+m21經(jīng)過坐標(biāo)原點,且當(dāng)x<0時,y隨x的增大而減。

(1)求拋物線的解析式;

(2)結(jié)合圖象寫出,0<x<4時,直接寫出y的取值范圍 ;

(3)設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作ABx軸于點B,DCx軸于點C.當(dāng)BC=1時,求出矩形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)2,﹣4,x,6,﹣8的眾數(shù)為6,則這組數(shù)據(jù)的中位數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將多項式x3-5xy2-7y3+8x2y按某一個字母的升冪排列,正確的是()

A. x3-7y3-5xy2+8x2y B. -7y3-5xy2+8x2y+x3 C. 7y3-5xy2+8x2y+x3 D. x3-5xy2+8x2y-7y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為O的直徑,AB=AC,BC交O于點D,AC交O于點E,BAC=45°.

(1)求EBC的度數(shù);

(2)求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E點在AB上,F(xiàn)點在BC的延長線上,且CF=AE,連接DE、DF、EF.

求證:ADE≌△CDF;

填空:CDF可以由ADE繞旋轉(zhuǎn)中心 點,按逆時針方向旋轉(zhuǎn) 度得到;

若BC=3,AE=1,求DEF的面積.

查看答案和解析>>

同步練習(xí)冊答案