【題目】如圖,在平面直角坐標系中,等腰三角形ABO的底邊OA在x軸上,頂點B在反比例函數(shù)y= (x>0)的圖象上,當?shù)走匫A上的點A在x軸的正半軸上自左向右移動時,頂點B也隨之在反比例函數(shù)y= (x>0)的圖象上滑動,但點O始終位于原點.

(1)如圖①,若點A的坐標為(6,0),求點B的坐標;
(2)當點A移動到什么位置時,三角形ABO變成等腰直角三角形,請說明理由;
(3)在(2)中,如圖②,△PA1A是等腰直角三角形,點P在反比例函數(shù)y= (x>0)的圖象上,斜邊A1A在x軸上,求點A1的坐標.

【答案】
(1)

解:如圖①,過點B作BC⊥x軸于點C,

∵OB=AB,

∴OC=AC,點A移動到什么位置時,三角形ABO變成等腰直角三角形,

∵點A的坐標為(6,0),

∴OC= OA=3,

∵頂點B在反比例函數(shù)y= (x>0)的圖象上,

∴y= =4,

∴點B的坐標為:(3,4)


(2)

解:點A移動到(4 ,0)時,△ABO變成等腰直角三角形.

理由:如圖②,過點B作BC⊥x軸于點C,

∵△AOB是等腰直角三角形,

∴BC=OC= OA,

設(shè)點B(a,a),

∵頂點B在反比例函數(shù)y= (x>0)的圖象上,

∴a= ,

解得:a=±2 (負值舍去),

∴OC=2 ,

∴OA=2OC=4

∴點A移動到(4 ,0)時,△ABO變成等腰直角三角形


(3)

解:如圖②,過點P作PD⊥x軸于點D,

∵△PA1A是等腰直角三角形,

∴PD=AD,

設(shè)AD=b,則點P(4 +b,b),

∵點P在反比例函數(shù)y= (x>0)的圖象上,

∴b= ,

解得:b1=2 ﹣2 ,b2=﹣2 ﹣2 (舍去),

∴AA1=2b=4 ﹣4 ,

∴OA1=OA+AA1=4

∴點A1的坐標為:(4 ,0).


【解析】(1)首先過點B作BC⊥x軸于點C,由等腰三角形的三線合一,可得OC=AC=3,然后由頂點B在反比例函數(shù)y= (x>0)的圖象上,求得點B的坐標;(2)首先由等腰直角三角形的性質(zhì),可得OC=BC,然后由頂點B在反比例函數(shù)y= (x>0)的圖象上,求得點B的坐標,繼而求得點A的坐標;(3)首先過點P作PD⊥x軸于點D,易得AD=PD,則可設(shè)AD=b,則點P(4 +b,b),又由點P在反比例函數(shù)y= (x>0)的圖象上,求得b的值,繼而求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,RtABC的直角邊AC在x軸上,ACB=90°,AC=1,反比例函數(shù)(k0)的圖象經(jīng)過BC邊的中點D(3,1)

(1)求這個反比例函數(shù)的表達式;

(2)若ABC與EFG成中心對稱,且EFG的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.

求OF的長;

連接AF,BE,證明四邊形ABEF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖所示,點為矩形的中點,在矩形的四個頂點處都有定位儀,可監(jiān)測運動員的越野進程,其中一位運動員從點出發(fā),沿著的路線勻速行進,到達點.設(shè)運動員的運動時間為,到監(jiān)測點的距離為.現(xiàn)有的函數(shù)關(guān)系的圖象大致如圖所示,則這一信息的來源是( ).

A. 監(jiān)測點 B. 監(jiān)測點 C. 監(jiān)測點 D. 監(jiān)測點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖ABCD,ADC,DAB的平分線DF,AE分別與線段BC相交于點FE,DFAE相交于點G

1求證AEDF

2AD10,AB6AE4,DF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:CD是⊙O的直徑,線段AB過圓心O,且OA=OB= ,CD=2,連接AC、AD、BD、BC、AD、CB分別交⊙O于E、F.
(1)問四邊形CEDF是何種特殊四邊形?請證明你的結(jié)論;
(2)當AC與⊙O相切時,四邊形CEDF是正方形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景)某班在一次數(shù)學(xué)實踐活動中,對矩形紙片進行折疊實踐操作,并將其產(chǎn)生的數(shù)學(xué)問題進行相關(guān)探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點P是BC邊上一點,現(xiàn)將△APB沿AP對折,得△APM,顯然點M位置隨P點位置變化而發(fā)生改變
(問題)試求下列幾種情況下:點M到直線CD的距離

(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,弦AD平分∠BAC,交BC于點E,AB=6,AD=5,則AE的長為(
A.2.5
B.2.8
C.3
D.3.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某機動車出發(fā)前油箱內(nèi)有油42L行駛?cè)舾尚r后,途中在加油站加油若干升油箱中余油量QL與行駛時間th之間的函數(shù)關(guān)系如圖所示,根據(jù)圖回答問題:

1機動車行駛 h后加油;

2加油前油箱余油量Q與行駛時間t的函數(shù)關(guān)系式是 ;

3中途加油 L;

4如果加油站距目的地還有230km,車速為40km/h,要到達目的地油箱中的油是否夠用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘭畫了一個函數(shù)y=x2+ax+b的圖象如圖,則關(guān)于x的方程x2+ax+b=0的解是(
A.無解
B.x=1
C.x=﹣4
D.x=﹣1或x=4

查看答案和解析>>

同步練習(xí)冊答案