【題目】如圖,有長為27m的籬笆,一面利用墻(墻的最大可用長度 a12m),圍成中間隔有一道籬笆的矩形花圃,設(shè)花圃的寬為AB=xm,面積為Sm2

(1) S x 的函數(shù)關(guān)系式;

(2)求矩形花圃的最大面積.

【答案】(1)S=﹣3x2+27x(5≤x<9);(2)60m2

【解析】

(1)根據(jù)ABxm,BC就為(27﹣3x),利用長方體的面積公式,可求出關(guān)系式

(2)配方后,根據(jù)二次函數(shù)的性質(zhì),即可求得結(jié)果

1)根據(jù)題意得Sx(27﹣3x),即所求的函數(shù)解析式為S=﹣3x2+27x(5≤x<9);

(2)S=27x﹣3x2=﹣3(x2

∵墻的最大可用長度為12m,0≤BC=27﹣3x≤12,∴5≤x<9.

∵對稱軸x=4.5,開口向下,∴當x=5m有最大面積的花圃

x=5m,最大面積為:=5×12=60m2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點A(1,2).直線lx軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求ABC的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O為△ABC的外接圓,直線l與⊙O相切于點P,BC.

(1) 連接PO,并延長交⊙O于點D,連接AD.證明: AD平分∠BAC;

(2) 在(1)的條件下,ADBC于點E,連接CD.DE=2,AE=6.試求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017四川省達州市,第16題,3分)如圖,矩形ABCD中,EBC上一點,連接AE,將矩形沿AE翻折,使點B落在CDF處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙OAD相切于點P.若AB=6,BC=,則下列結(jié)論:①FCD的中點;②⊙O的半徑是2;AE=CE;.其中正確結(jié)論的序號是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線 y=x2+bx+ y軸交于點 B,將該拋物線平移,使其經(jīng)過點 A(-,0),且與 x軸交于另一點 C. b≤﹣2,則線段 OB,OC的大小關(guān)系是( )

A. OB≤OC B. OB<OC C. OB≥OC D. OB>OC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的半徑為,的兩條弦,,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】賓館有50間房供游客居住,當每間房每天定價為180元時,賓館會住滿;當每間房每天的定價每增加10元時,就會空閑一間房.如果有游客居住,賓館需對居住的每間房每天支出 20元的費用.當房價定為多少元時,賓館當天的利潤為10890元?設(shè)房價比定價 180元增加 x元,則有( )

A. (x﹣20)(50﹣)=10890 B. x(50﹣)﹣50×20=10890

C. (180+x﹣20)(50﹣)=10890 D. (x+180)(50﹣)﹣50×20=10890

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件20元,售價為每件25元時,每天可賣出250件.市場調(diào)查反映:如果調(diào)整價格,一件商品每漲價1元,每天要少賣出10件.

(1)求出每天所得的銷售利潤w(元)與每件漲價x(元)之間的函數(shù)關(guān)系式;

(2)銷售單價為多少元時,該商品每天的銷售利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮是一對雙胞胎,他們的爸爸買了兩套不同品牌的運動服送給他們,小明和小亮都想先挑選.于是小明設(shè)計了如下游戲來決定誰先挑選.游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字以外其它均相同的4個小球,上面分別標有數(shù)字1、2、3、4.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和為奇數(shù),則小明先挑選;否則小亮先挑選.

(1)用樹狀圖或列表法求出小明先挑選的概率;

(2)你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

同步練習冊答案